Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Large scale isolation and purification of soluble RAGE from lung tissue.

  • Judson M Englert‎ et al.
  • Protein expression and purification‎
  • 2008‎

The receptor for advanced glycation end-products (RAGE) has been implicated in numerous disease processes including: atherosclerosis, diabetic nephropathy, impaired wound healing and neuropathy to name a few. Treatment of animals with a soluble isoform of the receptor (sRAGE) has been shown to prevent and even reverse many disease processes. Isolating large quantities of pure sRAGE for in vitro and in vivo studies has hindered its development as a therapeutic strategy in other RAGE mediated diseases that require long-term therapy. This article provides an improvement in both yield and detail of a previously published method to obtain 10mg of pure, endotoxin free sRAGE from 65 g of lung tissue.


A novel approach for production of an active N-terminally truncated Ulp1 (SUMO protease 1) catalytic domain from Escherichia coli inclusion bodies.

  • Marina Y Linova‎ et al.
  • Protein expression and purification‎
  • 2020‎

The SUMO fusion system is widely used to facilitate recombinant expression and production of difficult-to-express proteins. After purification of the recombinant fusion protein, removal of the SUMO-tag is accomplished by the yeast cysteine protease, SUMO protease 1 (Ulp1), which specifically recognizes the tertiary fold of the SUMO domain. At present, the expression of the catalytic domain, residues 403-621, is used for obtaining soluble and biologically active Ulp1. However, we have observed that the soluble and catalytically active Ulp1403-621 inhibits the growth of E. coli host cells. In the current study, we demonstrate an alternative route for producing active Ulp1 catalytic domain from a His-tagged N-terminally truncated variant, residues 416-621, which is expressed in E. coli inclusion bodies and subsequently refolded. Expressing the insoluble Ulp1416-621 variant is advantageous for achieving higher production yields. Approximately 285 mg of recombinant Ulp1416-621 was recovered from inclusion bodies isolated from 1 L of high cell-density E. coli batch fermentation culture. After Ni2+-affinity purification of inactive and denatured Ulp1416-621 in 7.5 M urea, different refolding conditions with varying l-arginine concentration, pH, and temperature were tested. We have successfully refolded the enzyme in 0.25 M l-arginine and 0.5 M Tris-HCl (pH 7) at room temperature. Approximately 80 mg of active Ulp1416-621 catalytic domain can be produced from 1 L of high cell-density E. coli culture. We discuss the applicability of inclusion body-directed expression and considerations for obtaining high expression yields and efficient refolding conditions to reconstitute the active protein fold.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: