Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Protection and Systemic Translocation of siRNA Following Oral Administration of Chitosan/siRNA Nanoparticles.

  • Borja Ballarín-González‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2013‎

Harnessing the RNA interference pathway offers a new therapeutic modality; however, solutions to overcome biological barriers to small interfering RNA (siRNA) delivery are required for clinical translation. This work demonstrates, by direct northern and quantitative PCR (qPCR) detection, stability, gastrointestinal (GI) deposition, and translocation into peripheral tissue of nonmodified siRNA after oral gavage of chitosan/siRNA nanoparticles in mice. In contrast to naked siRNA, retained structural integrity and deposition in the stomach, proximal and distal small intestine, and colon was observed at 1 and 5 hours for siRNA within nanoparticles. Furthermore, histological detection of fluorescent siRNA at the apical regions of the intestinal epithelium suggests mucoadhesion provided by chitosan. Detection of intact siRNA in the liver, spleen, and kidney was observed 1 hour after oral gavage, with an organ distribution pattern influenced by nanoparticle N:P ratio that could reflect differences in particle stability. This proof-of-concept work presents an oral delivery platform that could have the potential to treat local and systemic disorders by siRNA.Molecular Therapy - Nucleic Acids (2013) 2, e76; doi:10.1038/mtna.2013.2; published online 5 March 2013.


Improved Cancer Targeting by Multimerizing Aptamers on Nanoscaffolds.

  • Marjan Omer‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2020‎

Aptamers are short single-stranded oligonucleotides selected to bind with high affinity and specificity to a target. In contrast to antibodies, aptamers can be produced in large-scale in vitro systems without the need for any biological agents, making them highly attractive as targeting ligands for bioimaging and drug delivery. For in vivo applications it is often desirable to multimerize the aptamers in order to increase their binding strength and overall specificity. Additional functionalities, such as imaging and therapeutic agents, as well as pharmacokinetic modifiers, need to be attached in a stoichiometric fashion. Herein, we present a robust method for assembly of up to three aptamers and a fluorophore in a single well-defined nanostructure. The process is entirely modular and can be applied to any aptamer requiring only a single reactive "click handle." Multimerization of two aptamers, A9g and GL21.T, previously shown to target cancer cells, led to a strong increase in cell uptake. A similar effect was observed for the prostate-specific membrane antigen (PSMA)-targeting A9g aptamer in mice where multivalent aptamer binding led to increased tumor specificity. Altogether, this method provides a platform for multimerization of aptamers with advantages in terms of combinatorial screening capacity and multifunctional design of nanomedicine.


Modular Assembly of Cell-targeting Devices Based on an Uncommon G-quadruplex Aptamer.

  • Felipe Opazo‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2015‎

Aptamers are valuable tools that provide great potential to develop cost-effective diagnostics and therapies in the biomedical field. Here, we report a novel DNA aptamer that folds into an unconventional G-quadruplex structure able to recognize and enter specifically into human Burkitt's lymphoma cells. We further optimized this aptamer to a highly versatile and stable minimized version. The minimized aptamer can be easily equipped with different functionalities like quantum dots, organic dyes, or even a second different aptamer domain yielding a bi-paratopic aptamer. Although the target molecule of the aptamer remains unknown, our microscopy and pharmacological studies revealed that the aptamer hijacks the clathrin-mediated endocytosis pathway for its cellular internalization. We conclude that this novel class of aptamers can be used as a modular tool to specifically deliver different cargoes into malignant cells. This work provides a thorough characterization of the aptamer and we expect that our strategy will pave the path for future therapeutic applications.


Enhanced Tailored MicroRNA Sponge Activity of RNA Pol II-Transcribed TuD Hairpins Relative to Ectopically Expressed ciRS7-Derived circRNAs.

  • Anne Kruse Hollensen‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2018‎

As key regulators of gene expression, microRNAs (miRNAs) have emerged as targets in basic experimentation and therapy. Administration of DNA-encoded RNA molecules, targeting miRNAs through base pairing, is one viable strategy for inhibiting specific miRNAs. A naturally occurring circular RNA (circRNA), ciRS-7, serving as a miRNA-7 (miR-7) sponge was recently identified. This has sparked tremendous interest in adapting circRNAs for suppressing miRNA function. In parallel, we and others have demonstrated efficacy of expressed anti-miRNA Tough Decoy (TuD) hairpins. To compare properties of such inhibitors, we express ciRS-7 and TuD-containing miRNA suppressor transcripts from identical vector formats adapted from RNA polymerase II-directed expression plasmids previously used for production of ciRS-7. In general, markedly higher levels of miR-7 suppression with TuD transcripts relative to ciRS-7 are observed, leading to superior miRNA sponge effects using expressed TuD hairpins. Notably however, we find that individual ciRS-7 transcripts are more potent inhibitors of miR-7 activity than individual TuD7-containing transcripts, although each miR-7 seed match target site in ciRS-7 is, on average, less potent than the perfectly matched target sites in the TuD motif. All together, our studies call for improved means of designing and producing circRNAs for customized miRNA targeting to match TuD hairpins for tailored miRNA suppression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: