Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Monounsaturated fatty acids prevent the aversive effects of obesity on locomotion, brain activity, and sleep behavior.

  • Tina Sartorius‎ et al.
  • Diabetes‎
  • 2012‎

Fat and physical inactivity are the most evident factors in the pathogenesis of obesity, and fat quality seems to play a crucial role for measures of glucose homeostasis. However, the impact of dietary fat quality on brain function, behavior, and sleep is basically unknown. In this study, mice were fed a diet supplemented with either monounsaturated fatty acids (MUFAs) or saturated fatty acids (SFAs) and their impact on glucose homeostasis, locomotion, brain activity, and sleep behavior was evaluated. MUFAs and SFAs led to a significant increase in fat mass but only feeding of SFAs was accompanied by glucose intolerance in mice. Radiotelemetry revealed a significant decrease in cortical activity in SFA-mice whereas MUFAs even improved activity. SFAs decreased wakefulness and increased non-rapid eye movement sleep. An intracerebroventricular application of insulin promoted locomotor activity in MUFA-fed mice, whereas SFA-mice were resistant. In humans, SFA-enriched diet led to a decrease in hippocampal and cortical activity determined by functional magnetic resonance imaging techniques. Together, dietary intake of MUFAs promoted insulin action in the brain with its beneficial effects for cortical activity, locomotion, and sleep, whereas a comparable intake of SFAs acted as a negative modulator of brain activity in mice and humans.


Overexpression of kinase-negative protein kinase Cdelta in pancreatic beta-cells protects mice from diet-induced glucose intolerance and beta-cell dysfunction.

  • Anita M Hennige‎ et al.
  • Diabetes‎
  • 2010‎

In vitro models suggest that free fatty acid-induced apoptotic beta-cell death is mediated through protein kinase C (PKC)delta. To examine the role of PKCdelta signaling in vivo, transgenic mice overexpressing a kinase-negative PKCdelta (PKCdeltaKN) selectively in beta-cells were generated and analyzed for glucose homeostasis and beta-cell survival.


Individual stearoyl-coa desaturase 1 expression modulates endoplasmic reticulum stress and inflammation in human myotubes and is associated with skeletal muscle lipid storage and insulin sensitivity in vivo.

  • Andreas Peter‎ et al.
  • Diabetes‎
  • 2009‎

Increased plasma levels of free fatty acids occur in obesity and type 2 diabetes and contribute to the development of insulin resistance. Saturated fatty acids (SFAs) such as palmitate especially have lipotoxic effects leading to endoplasmatic reticulum (ER) stress, inflammation, and insulin resistance. Stearoyl-CoA desaturase 1 (SCD1) plays a key role in preventing lipotoxic effects, as it converts SFAs to less harmful monounsaturated fatty acids. Here, we tested the hypothesis that individual differences in the regulation of SCD1 expression by palmitate exist and influence insulin sensitivity and the cellular response to palmitate.


Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity.

  • Antigone S Dimas‎ et al.
  • Diabetes‎
  • 2014‎

Patients with established type 2 diabetes display both β-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci, and indices of proinsulin processing, insulin secretion, and insulin sensitivity. We included data from up to 58,614 nondiabetic subjects with basal measures and 17,327 with dynamic measures. We used additive genetic models with adjustment for sex, age, and BMI, followed by fixed-effects, inverse-variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second cluster (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without a detectable change in fasting glucose levels. The final group contained 20 risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.


Muscle-derived angiopoietin-like protein 4 is induced by fatty acids via peroxisome proliferator-activated receptor (PPAR)-delta and is of metabolic relevance in humans.

  • Harald Staiger‎ et al.
  • Diabetes‎
  • 2009‎

Long-chain fatty acids (LCFAs) contribute to metabolic homeostasis in part via gene regulation. This study's objective was to identify novel LCFA target genes in human skeletal muscle cells (myotubes).


Association of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion.

  • Karsten Müssig‎ et al.
  • Diabetes‎
  • 2009‎

KCNQ1 gene polymorphisms are associated with type 2 diabetes. This linkage appears to be mediated by altered beta-cell function. In an attempt to study underlying mechanisms, we examined the effect of four KCNQ1 single nucleotide polymorphisms (SNPs) on insulin secretion upon different stimuli.


Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans.

  • Robert Wagner‎ et al.
  • Diabetes‎
  • 2013‎

The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists.


The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway.

  • Leen M 't Hart‎ et al.
  • Diabetes‎
  • 2013‎

The incretin hormone glucagon-like peptide 1 (GLP-1) promotes glucose homeostasis and enhances β-cell function. GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors, which inhibit the physiological inactivation of endogenous GLP-1, are used for the treatment of type 2 diabetes. Using the Metabochip, we identified three novel genetic loci with large effects (30-40%) on GLP-1-stimulated insulin secretion during hyperglycemic clamps in nondiabetic Caucasian individuals (TMEM114; CHST3 and CTRB1/2; n = 232; all P ≤ 8.8 × 10(-7)). rs7202877 near CTRB1/2, a known diabetes risk locus, also associated with an absolute 0.51 ± 0.16% (5.6 ± 1.7 mmol/mol) lower A1C response to DPP-4 inhibitor treatment in G-allele carriers, but there was no effect on GLP-1 RA treatment in type 2 diabetic patients (n = 527). Furthermore, in pancreatic tissue, we show that rs7202877 acts as expression quantitative trait locus for CTRB1 and CTRB2, encoding chymotrypsinogen, and increases fecal chymotrypsin activity in healthy carriers. Chymotrypsin is one of the most abundant digestive enzymes in the gut where it cleaves food proteins into smaller peptide fragments. Our data identify chymotrypsin in the regulation of the incretin pathway, development of diabetes, and response to DPP-4 inhibitor treatment.


ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations.

  • Anne-Sofie Graae‎ et al.
  • Diabetes‎
  • 2019‎

The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin β1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.


Plasma fetuin-A levels and the risk of type 2 diabetes.

  • Norbert Stefan‎ et al.
  • Diabetes‎
  • 2008‎

The liver-secreted protein fetuin-A induces insulin resistance in animals, and circulating fetuin-A is elevated in insulin resistance and fatty liver in humans. We investigated whether plasma fetuin-A levels predict the incidence of type 2 diabetes in a large prospective, population-based study.


Lower Hepatic Fat Is Associated With Improved Insulin Secretion in a High-Risk Prediabetes Subphenotype During Lifestyle Intervention.

  • Robert Wagner‎ et al.
  • Diabetes‎
  • 2023‎

The objective of this work was to investigate whether impaired insulin secretion can be restored by lifestyle intervention in specific subphenotypes of prediabetes. We assigned 1,045 participants from the Prediabetes Lifestyle Intervention Study (PLIS) to six recently established prediabetes clusters. Insulin secretion was assessed by a C-peptide-based index derived from oral glucose tolerance tests and modeled from three time points during a 1-year intervention. We also analyzed the change of glycemia, insulin sensitivity, and liver fat. All prediabetes high-risk clusters (cluster 3, 5, and 6) had improved glycemic traits during the lifestyle intervention, whereas insulin secretion only increased in clusters 3 and 5 (P < 0.001); however, high liver fat in cluster 5 was associated with a failure to improve insulin secretion (Pinteraction < 0.001). Thus, interventions to reduce liver fat have the potential to improve insulin secretion in a defined subgroup of prediabetes.


Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci.

  • Geoffrey A Walford‎ et al.
  • Diabetes‎
  • 2016‎

Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: rs13422522 (NYAP2; P = 8.87 × 10(-11)), rs12454712 (BCL2; P = 2.7 × 10(-8)), and rs10506418 (FAM19A2; P = 1.9 × 10(-8)). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci.


Genetic ablation of cGMP-dependent protein kinase type I causes liver inflammation and fasting hyperglycemia.

  • Stefan Z Lutz‎ et al.
  • Diabetes‎
  • 2011‎

The nitric oxide/cGMP/cGMP-dependent protein kinase type I (cGKI) signaling pathway regulates cell functions that play a pivotal role in the pathogenesis of type 2 diabetes. However, the impact of a dysfunction of this pathway for glucose metabolism in vivo is unknown.


Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach.

  • Anna Floegel‎ et al.
  • Diabetes‎
  • 2013‎

Metabolomic discovery of biomarkers of type 2 diabetes (T2D) risk may reveal etiological pathways and help to identify individuals at risk for disease. We prospectively investigated the association between serum metabolites measured by targeted metabolomics and risk of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. Variance of the metabolites was largely explained by two metabolite factors with opposing risk associations (factor 1 relative risk in extreme quintiles 0.31 [95% CI 0.21-0.44], factor 2 3.82 [2.64-5.52]). The metabolites significantly improved T2D prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in the Tübingen Family study and were partly replicated in the independent KORA (Cooperative Health Research in the Region of Augsburg) cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of T2D.


Relationships of circulating sex hormone-binding globulin with metabolic traits in humans.

  • Andreas Peter‎ et al.
  • Diabetes‎
  • 2010‎

Recent data suggested that sex hormone-binding globulin (SHBG) levels decrease when fat accumulates in the liver and that circulating SHBG may be causally involved in the pathogenesis of type 2 diabetes in humans. In the present study, we investigated mechanisms by which high SHBG may prevent development to diabetes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: