Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men.

  • Alena Stancáková‎ et al.
  • Diabetes‎
  • 2009‎

We investigated the effects of 18 confirmed type 2 diabetes risk single nucleotide polymorphisms (SNPs) on insulin sensitivity, insulin secretion, and conversion of proinsulin to insulin.


Impact of rs361072 in the phosphoinositide 3-kinase p110beta gene on whole-body glucose metabolism and subunit protein expression in skeletal muscle.

  • Rasmus Ribel-Madsen‎ et al.
  • Diabetes‎
  • 2010‎

Phosphoinositide 3-kinase (PI3K) is a major effector in insulin signaling. rs361072, located in the promoter of the gene (PIK3CB) for the p110beta subunit, has previously been found to be associated with homeostasis model assessment for insulin resistance (HOMA-IR) in obese subjects. The aim was to investigate the influence of rs361072 on in vivo glucose metabolism, skeletal muscle PI3K subunit protein levels, and type 2 diabetes.


Combined analyses of 20 common obesity susceptibility variants.

  • Camilla Helene Sandholt‎ et al.
  • Diabetes‎
  • 2010‎

Genome-wide association studies and linkage studies have identified 20 validated genetic variants associated with obesity and/or related phenotypes. The variants are common, and they individually exhibit small-to-modest effect sizes.


Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans.

  • Erik Ingelsson‎ et al.
  • Diabetes‎
  • 2010‎

OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.


Mendelian randomization studies do not support a causal role for reduced circulating adiponectin levels in insulin resistance and type 2 diabetes.

  • Hanieh Yaghootkar‎ et al.
  • Diabetes‎
  • 2013‎

Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statistics-based genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26-0.35) increase in fasting insulin, a 0.34-SD (0.30-0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47-2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI -0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (-0.20 SD; 95% CI -0.38 to -0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75-1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: -0.03 SD; 95% CI -0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95-1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes.


Association of ketone body levels with hyperglycemia and type 2 diabetes in 9,398 Finnish men.

  • Yuvaraj Mahendran‎ et al.
  • Diabetes‎
  • 2013‎

We investigated the association of the levels of ketone bodies (KBs) with hyperglycemia and with 62 genetic risk variants regulating glucose levels or type 2 diabetes in the population-based Metabolic Syndrome in Men (METSIM) study, including 9,398 Finnish men without diabetes or newly diagnosed type 2 diabetes. Increasing fasting and 2-h plasma glucose levels were associated with elevated levels of acetoacetate (AcAc) and β-hydroxybutyrate (BHB). AcAc and BHB predicted an increase in the glucose area under the curve in an oral glucose tolerance test, and AcAc predicted the conversion to type 2 diabetes in a 5-year follow-up of the METSIM cohort. Impaired insulin secretion, but not insulin resistance, explained these findings. Of the 62 single nucleotide polymorphisms associated with the risk of type 2 diabetes or hyperglycemia, the glucose-increasing C allele of GCKR significantly associated with elevated levels of fasting BHB levels. Adipose tissue mRNA expression levels of genes involved in ketolysis were significantly associated with insulin sensitivity (Matsuda index). In conclusion, high levels of KBs predicted subsequent worsening of hyperglycemia, and a common variant of GCKR was significantly associated with BHB levels.


Monounsaturated fatty acids prevent the aversive effects of obesity on locomotion, brain activity, and sleep behavior.

  • Tina Sartorius‎ et al.
  • Diabetes‎
  • 2012‎

Fat and physical inactivity are the most evident factors in the pathogenesis of obesity, and fat quality seems to play a crucial role for measures of glucose homeostasis. However, the impact of dietary fat quality on brain function, behavior, and sleep is basically unknown. In this study, mice were fed a diet supplemented with either monounsaturated fatty acids (MUFAs) or saturated fatty acids (SFAs) and their impact on glucose homeostasis, locomotion, brain activity, and sleep behavior was evaluated. MUFAs and SFAs led to a significant increase in fat mass but only feeding of SFAs was accompanied by glucose intolerance in mice. Radiotelemetry revealed a significant decrease in cortical activity in SFA-mice whereas MUFAs even improved activity. SFAs decreased wakefulness and increased non-rapid eye movement sleep. An intracerebroventricular application of insulin promoted locomotor activity in MUFA-fed mice, whereas SFA-mice were resistant. In humans, SFA-enriched diet led to a decrease in hippocampal and cortical activity determined by functional magnetic resonance imaging techniques. Together, dietary intake of MUFAs promoted insulin action in the brain with its beneficial effects for cortical activity, locomotion, and sleep, whereas a comparable intake of SFAs acted as a negative modulator of brain activity in mice and humans.


A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk.

  • Alisa Manning‎ et al.
  • Diabetes‎
  • 2017‎

To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.


Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity.

  • Antigone S Dimas‎ et al.
  • Diabetes‎
  • 2014‎

Patients with established type 2 diabetes display both β-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci, and indices of proinsulin processing, insulin secretion, and insulin sensitivity. We included data from up to 58,614 nondiabetic subjects with basal measures and 17,327 with dynamic measures. We used additive genetic models with adjustment for sex, age, and BMI, followed by fixed-effects, inverse-variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second cluster (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without a detectable change in fasting glucose levels. The final group contained 20 risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.


The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway.

  • Leen M 't Hart‎ et al.
  • Diabetes‎
  • 2013‎

The incretin hormone glucagon-like peptide 1 (GLP-1) promotes glucose homeostasis and enhances β-cell function. GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors, which inhibit the physiological inactivation of endogenous GLP-1, are used for the treatment of type 2 diabetes. Using the Metabochip, we identified three novel genetic loci with large effects (30-40%) on GLP-1-stimulated insulin secretion during hyperglycemic clamps in nondiabetic Caucasian individuals (TMEM114; CHST3 and CTRB1/2; n = 232; all P ≤ 8.8 × 10(-7)). rs7202877 near CTRB1/2, a known diabetes risk locus, also associated with an absolute 0.51 ± 0.16% (5.6 ± 1.7 mmol/mol) lower A1C response to DPP-4 inhibitor treatment in G-allele carriers, but there was no effect on GLP-1 RA treatment in type 2 diabetic patients (n = 527). Furthermore, in pancreatic tissue, we show that rs7202877 acts as expression quantitative trait locus for CTRB1 and CTRB2, encoding chymotrypsinogen, and increases fecal chymotrypsin activity in healthy carriers. Chymotrypsin is one of the most abundant digestive enzymes in the gut where it cleaves food proteins into smaller peptide fragments. Our data identify chymotrypsin in the regulation of the incretin pathway, development of diabetes, and response to DPP-4 inhibitor treatment.


ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations.

  • Anne-Sofie Graae‎ et al.
  • Diabetes‎
  • 2019‎

The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin β1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.


Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans.

  • Robert Wagner‎ et al.
  • Diabetes‎
  • 2013‎

The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists.


Muscle-derived angiopoietin-like protein 4 is induced by fatty acids via peroxisome proliferator-activated receptor (PPAR)-delta and is of metabolic relevance in humans.

  • Harald Staiger‎ et al.
  • Diabetes‎
  • 2009‎

Long-chain fatty acids (LCFAs) contribute to metabolic homeostasis in part via gene regulation. This study's objective was to identify novel LCFA target genes in human skeletal muscle cells (myotubes).


Association of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion.

  • Karsten Müssig‎ et al.
  • Diabetes‎
  • 2009‎

KCNQ1 gene polymorphisms are associated with type 2 diabetes. This linkage appears to be mediated by altered beta-cell function. In an attempt to study underlying mechanisms, we examined the effect of four KCNQ1 single nucleotide polymorphisms (SNPs) on insulin secretion upon different stimuli.


Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes.

  • Niels Grarup‎ et al.
  • Diabetes‎
  • 2008‎

We evaluated the impact on diabetes-related intermediary traits of common novel type 2 diabetes-associated variants in the JAZF1 (rs864745), CDC123/CAMK1D (rs12779790), TSPAN8 (rs7961581), THADA (rs7578597), ADAMTS9 (rs4607103), and NOTCH2 (rs10923931) loci, which were recently identified by meta-analysis of genome-wide association data.


Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

  • Rona J Strawbridge‎ et al.
  • Diabetes‎
  • 2011‎

Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology.


A Type 2 Diabetes-Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the ADCY5 Locus.

  • Tamara S Roman‎ et al.
  • Diabetes‎
  • 2017‎

Molecular mechanisms remain unknown for most type 2 diabetes genome-wide association study identified loci. Variants associated with type 2 diabetes and fasting glucose levels reside in introns of ADCY5, a gene that encodes adenylate cyclase 5. Adenylate cyclase 5 catalyzes the production of cyclic AMP, which is a second messenger molecule involved in cell signaling and pancreatic β-cell insulin secretion. We demonstrated that type 2 diabetes risk alleles are associated with decreased ADCY5 expression in human islets and examined candidate variants for regulatory function. rs11708067 overlaps a predicted enhancer region in pancreatic islets. The type 2 diabetes risk rs11708067-A allele showed fewer H3K27ac ChIP-seq reads in human islets, lower transcriptional activity in reporter assays in rodent β-cells (rat 832/13 and mouse MIN6), and increased nuclear protein binding compared with the rs11708067-G allele. Homozygous deletion of the orthologous enhancer region in 832/13 cells resulted in a 64% reduction in expression level of Adcy5, but not adjacent gene Sec22a, and a 39% reduction in insulin secretion. Together, these data suggest that rs11708067-A risk allele contributes to type 2 diabetes by disrupting an islet enhancer, which results in reduced ADCY5 expression and impaired insulin secretion.


MTNR1B G24E variant associates With BMI and fasting plasma glucose in the general population in studies of 22,142 Europeans.

  • Ehm A Andersson‎ et al.
  • Diabetes‎
  • 2010‎

Common variants in the melatonin receptor type 1B (MTNR1B) locus have been shown to increase fasting plasma glucose (FPG) and the risk of type 2 diabetes. The aims of this study were to evaluate whether nonsynonymous variants in MTNR1B associate with monogenic forms of hyperglycemia, type 2 diabetes, or related metabolic traits.


Plasma fetuin-A levels and the risk of type 2 diabetes.

  • Norbert Stefan‎ et al.
  • Diabetes‎
  • 2008‎

The liver-secreted protein fetuin-A induces insulin resistance in animals, and circulating fetuin-A is elevated in insulin resistance and fatty liver in humans. We investigated whether plasma fetuin-A levels predict the incidence of type 2 diabetes in a large prospective, population-based study.


Comprehensive association study of type 2 diabetes and related quantitative traits with 222 candidate genes.

  • Kyle J Gaulton‎ et al.
  • Diabetes‎
  • 2008‎

Type 2 diabetes is a common complex disorder with environmental and genetic components. We used a candidate gene-based approach to identify single nucleotide polymorphism (SNP) variants in 222 candidate genes that influence susceptibility to type 2 diabetes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: