Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 149 papers

Ratjadones inhibit nuclear export by blocking CRM1/exportin 1.

  • Mario Köster‎ et al.
  • Experimental cell research‎
  • 2003‎

In addition to previously isolated ratjadone A we describe three new members of this family, ratjadones B, C, and D, from another strain of the myxobacterium Sorangium cellulosum. We have investigated the properties of these ratjadones with respect to their activity on mammalian cell lines. We found IC(50) values in the picomolar range and a significant increase in the size of nuclei. A further examination showed that they inhibit the export of the leucine-rich nuclear export signal (LR-NES) containing proteins in different cell lines. Ratjadones are able to inhibit the formation of the nuclear export complex composed of the CRM1, RanGTP, and the cargo protein, as shown by two different in vitro assays. Finally, the binding of ratjadone C to CRM1 was demonstrated. These ratjadone activities are in the same concentration range as described for the polyketide leptomycin B (LMB) from Streptomyces sp. Like LMB, it seems that the ratjadones covalently bind to CRM1, inhibit cargo protein binding via LR-NES, and thereby block nuclear export. Thus, the ratjadones represent a new class of natural compounds which inhibit proliferation in eukaryotes by blocking nuclear export.


A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity.

  • Jesper B Bramsen‎ et al.
  • Nucleic acids research‎
  • 2009‎

The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3'-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity.


A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects.

  • Jesper B Bramsen‎ et al.
  • Nucleic acids research‎
  • 2010‎

Small interfering RNAs (siRNAs) are now established as the preferred tool to inhibit gene function in mammalian cells yet trigger unintended gene silencing due to their inherent miRNA-like behavior. Such off-target effects are primarily mediated by the sequence-specific interaction between the siRNA seed regions (position 2-8 of either siRNA strand counting from the 5'-end) and complementary sequences in the 3'UTR of (off-) targets. It was previously shown that chemical modification of siRNAs can reduce off-targeting but only very few modifications have been tested leaving more to be identified. Here we developed a luciferase reporter-based assay suitable to monitor siRNA off-targeting in a high throughput manner using stable cell lines. We investigated the impact of chemically modifying single nucleotide positions within the siRNA seed on siRNA function and off-targeting using 10 different types of chemical modifications, three different target sequences and three siRNA concentrations. We found several differently modified siRNAs to exercise reduced off-targeting yet incorporation of the strongly destabilizing unlocked nucleic acid (UNA) modification into position 7 of the siRNA most potently reduced off-targeting for all tested sequences. Notably, such position-specific destabilization of siRNA-target interactions did not significantly reduce siRNA potency and is therefore well suited for future siRNA designs especially for applications in vivo where siRNA concentrations, expectedly, will be low.


Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain.

  • Christian Ansgar Hundahl‎ et al.
  • Brain research‎
  • 2010‎

The present study aimed at characterizing the anatomical and subcellular localization of cytoglobin (Cygb) and neuroglobin (Ngb) in the mouse brain by use of in situ hybridisation, immunohistochemistry and immunoelectron microscopy. Cygb and Ngb were only found in distinct brain areas and often in the same areas. We found intense staining in the piriform cortex, amygdala, hypothalamus (medial preoptic area, supra chiasmatic nucleus, lateral hypothalamus (LH), ventromedial hypothalamic nucleus, and the arcuate nucleus, habenular nuclei, laterodorsal tegmental nucleus (LDTg), pedunculopontine tegmental nucleus (PPTg), locus coeruleus, nucleus of the solitary tract and the spinal trigeminal nucleus. In addition Cygb is found in the hippocampus, the reticular thalamic nucleus, and the dorsal raphe nucleus; Ngb is found in the sub parabrachial nucleus. Co-localization of Cygb and Ngb is mainly observed in the LDTg and PPTg. Cygb and Ngb were found in cytoplasm, along neurotubuli, in mitochondria and in the nucleus by use of immunoelectron microscopy. Most neuronal nitric oxide synthase (nNOS)-positive neurons were found to co-localize Cygb, although not all nNOS neurones contain Cygb. Ngb co-localize with almost all orexin neurons in the LH. In conclusion the distribution of Cygb and Ngb seems much more restricted and coherent than previously reported. We believe other functions than pure oxygen buffers and neuroprotectants should be considered. The anatomical data indicate a role in NO signalling for Cygb and involvement in sleep-wake cycling for Cygb and Ngb.


Proneurotrophin-3 may induce Sortilin-dependent death in inner ear neurons.

  • Jacob Tauris‎ et al.
  • The European journal of neuroscience‎
  • 2011‎

The precursor of the neurotrophin (NT) nerve growth factor (NGF) (proNGF) serves physiological functions distinct from its mature counterpart as it induces neuronal apoptosis through activation of a p75 NT receptor (p75(NTR) ) and Sortilin death-signalling complex. The NTs brain-derived nerve growth factor (BDNF) and NT3 provide essential trophic support to auditory neurons. Injury to the NT-secreting cells in the inner ear is followed by irreversible degeneration of spiral ganglion neurons with consequences such as impaired hearing or deafness. Lack of mature NTs may explain the degeneration of spiral ganglion neurons, but another mechanism is possible as unprocessed proNTs released from the injured cells may contribute to the degeneration by induction of apoptosis. Recent studies demonstrate that proBDNF, like proNGF, is a potent inducer of Sortilin:p75(NTR) -mediated apoptosis. In addition, a coincident upregulation of proBDNF and p75(NTR) has been observed in degenerating spiral ganglion neurons, but the Sortilin expression in the inner ear is unresolved. Here we demonstrate that Sortilin and p75(NTR) are coexpressed in neurons of the neonatal inner ear. Furthermore, we establish that proNT3 exhibits high-affinity binding to Sortilin and has the capacity to enhance cell surface Sortilin:p75(NTR) complex formation as well as to mediate apoptosis in neurons coexpressing p75(NTR) and Sortilin. Based on the examination of wildtype and Sortilin-deficient mouse embryos, Sortilin does not significantly influence the developmental selection of spiral ganglion neurons. However, our results suggest that proNT3 and proBDNF may play important roles in the response to noise-induced injuries or ototoxic damage via the Sortilin:p75(NTR) death-signalling complex.


Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction.

  • Anne Schaefer‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

Cocaine is a highly addictive drug that exerts its effects by increasing the levels of released dopamine in the striatum, followed by stable changes in gene transcription, mRNA translation, and metabolism within medium spiny neurons in the striatum. The multiple changes in gene and protein expression associated with cocaine addiction suggest the existence of a mechanism that facilitates a coordinated cellular response to cocaine. Here, we provide evidence for a key role of miRNAs in cocaine addiction. We show that Argonaute 2 (Ago2), which plays an important role in miRNA generation and execution of miRNA-mediated gene silencing, is involved in regulation of cocaine addiction. Deficiency of Ago2 in dopamine 2 receptor (Drd2)-expressing neurons greatly reduces the motivation to self-administer cocaine in mice. We identified a distinct group of miRNAs that is specifically regulated by Ago2 in the striatum. Comparison of miRNAs affected by Ago2 deficiency with miRNAs that are enriched and/or up-regulated in Drd2-neurons in response to cocaine identified a set of miRNAs that are likely to play a role in cocaine addiction.


Chitosan/siRNA functionalized titanium surface via a layer-by-layer approach for in vitro sustained gene silencing and osteogenic promotion.

  • Wen Song‎ et al.
  • International journal of nanomedicine‎
  • 2015‎

Titanium surface modification is crucial to improving its bioactivity, mainly its bone binding ability in bone implant materials. In order to functionalize titanium with small interfering RNA (siRNA) for sustained gene silencing in nearby cells, the layer-by-layer (LbL) approach was applied using sodium hyaluronate and chitosan/siRNA (CS/siRNA) nanoparticles as polyanion and polycation, respectively, to build up the multilayered film on smooth titanium surfaces. The CS/siRNA nanoparticle characterization was analyzed first. Dynamic contact angle, atomic force microscopy, and scanning electron microscopy were used to monitor the layer accumulation. siRNA loaded in the film was quantitated and the release profile of film in phosphate-buffered saline was studied. In vitro knockdown effect and cytotoxicity evaluation of the film were investigated using H1299 human lung carcinoma cells expressing green fluorescent protein (GFP). The transfection of human osteoblast-like cell MG63 and H1299 were performed and the osteogenic differentiation of MG63 on LbL film was analyzed. The CS/siRNA nanoparticles exhibited nice size distribution. During formation of the film, the surface wettability, topography, and roughness were alternately changed, indicating successful adsorption of the individual layers. The scanning electron microscope images clearly demonstrated the hybrid structure between CS/siRNA nanoparticles and sodium hyaluronate polymer. The cumulated load of siRNA increased linearly with the bilayer number and, more importantly, a gradual release of the film allowed the siRNA to be maintained on the titanium surface over approximately 1 week. In vitro transfection revealed that the LbL film-associated siRNA could consistently suppress GFP expression in H1299 without showing significant cytotoxicity. The LbL film loading with osteogenic siRNA could dramatically increase the osteogenic differentiation in MG63. In conclusion, LbL technology can potentially modify titanium surfaces with specific gene-regulatory siRNAs to enhance biofunction.


Chitosan hydrogel as siRNA vector for prolonged gene silencing.

  • Zhiwei Ma‎ et al.
  • Journal of nanobiotechnology‎
  • 2014‎

The periodontitis is one of the most prevalent diseases with alveolar resorption in adult people and is the main cause of the tooth loss. To investigate the possibility for protecting the loss of alveolar bone in periodontal diseases, a RNAi-based therapeutic strategy is applied for silencing RANK signaling using thermosensitive chitosan hydrogel as siRNA reservoir and vector.


Chronic hypoxemia in late gestation decreases cardiomyocyte number but does not change expression of hypoxia-responsive genes.

  • Kimberley J Botting‎ et al.
  • Journal of the American Heart Association‎
  • 2014‎

Placental insufficiency is the leading cause of intrauterine growth restriction in the developed world and results in chronic hypoxemia in the fetus. Oxygen is essential for fetal heart development, but a hypoxemic environment in utero can permanently alter development of cardiomyocytes. The present study aimed to investigate the effect of placental restriction and chronic hypoxemia on total number of cardiomyocytes, cardiomyocyte apoptosis, total length of coronary capillaries, and expression of genes regulated by hypoxia.


A Novel Extracellular Gut Symbiont in the Marine Worm Priapulus caudatus (Priapulida) Reveals an Alphaproteobacterial Symbiont Clade of the Ecdysozoa.

  • Paul Kroer‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Priapulus caudatus (phylum Priapulida) is a benthic marine predatory worm with a cosmopolitan distribution. In its digestive tract we detected symbiotic bacteria that were consistently present in specimens collected over 8 years from three sites at the Swedish west coast. Based on their 16S rRNA gene sequence, these symbionts comprise a novel genus of the order Rickettsiales (Alphaproteobacteria). Electron microscopy and fluorescence in situ hybridization (FISH) identified them as extracellular, elongate bacteria closely associated with the microvilli, for which we propose the name "Candidatus Tenuibacter priapulorum". Within Rickettsiales, they form a phylogenetically well-defined, family-level clade with uncultured symbionts of marine, terrestrial, and freshwater arthropods. Cand. Tenuibacter priapulorum expands the host range of this candidate family from Arthropoda to the entire Ecdysozoa, which may indicate an evolutionary adaptation of this bacterial group to the microvilli-lined guts of the Ecdysozoa.


Progranulin regulates neuronal outgrowth independent of sortilin.

  • Jennifer Gass‎ et al.
  • Molecular neurodegeneration‎
  • 2012‎

Progranulin (PGRN), a widely secreted growth factor, is involved in multiple biological functions, and mutations located within the PGRN gene (GRN) are a major cause of frontotemporal lobar degeneration with TDP-43-positive inclusions (FLTD-TDP). In light of recent reports suggesting PGRN functions as a protective neurotrophic factor and that sortilin (SORT1) is a neuronal receptor for PGRN, we used a Sort1-deficient (Sort1-/-) murine primary hippocampal neuron model to investigate whether PGRN's neurotrophic effects are dependent on SORT1. We sought to elucidate this relationship to determine what role SORT1, as a regulator of PGRN levels, plays in modulating PGRN's neurotrophic effects.


miRConnect: identifying effector genes of miRNAs and miRNA families in cancer cells.

  • Youjia Hua‎ et al.
  • PloS one‎
  • 2011‎

micro(mi)RNAs are small non-coding RNAs that negatively regulate expression of most mRNAs. They are powerful regulators of various differentiation stages, and the expression of genes that either negatively or positively correlate with expressed miRNAs is expected to hold information on the biological state of the cell and, hence, of the function of the expressed miRNAs. We have compared the large amount of available gene array data on the steady state system of the NCI60 cell lines to two different data sets containing information on the expression of 583 individual miRNAs. In addition, we have generated custom data sets containing expression information of 54 miRNA families sharing the same seed match. We have developed a novel strategy for correlating miRNAs with individual genes based on a summed Pearson Correlation Coefficient (sPCC) that mimics an in silico titration experiment. By focusing on the genes that correlate with the expression of miRNAs without necessarily being direct targets of miRNAs, we have clustered miRNAs into different functional groups. This has resulted in the identification of three novel miRNAs that are linked to the epithelial-to-mesenchymal transition (EMT) in addition to the known EMT regulators of the miR-200 miRNA family. In addition, an analysis of gene signatures associated with EMT, c-MYC activity, and ribosomal protein gene expression allowed us to assign different activities to each of the functional clusters of miRNAs. All correlation data are available via a web interface that allows investigators to identify genes whose expression correlates with the expression of single miRNAs or entire miRNA families. miRConnect.org will aid in identifying pathways regulated by miRNAs without requiring specific knowledge of miRNA targets.


pH landscapes in a novel five-species model of early dental biofilm.

  • Sebastian Schlafer‎ et al.
  • PloS one‎
  • 2011‎

Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate.


Improved silencing properties using small internally segmented interfering RNAs.

  • Jesper B Bramsen‎ et al.
  • Nucleic acids research‎
  • 2007‎

RNA interference is mediated by small interfering RNAs (siRNAs) that upon incorporation into the RNA-induced silencing complex (RISC) can target complementary mRNA for degradation. Standard siRNA design usually feature a 19-27 base pair contiguous double-stranded region that is believed to be important for RISC incorporation. Here, we describe a novel siRNA design composed of an intact antisense strand complemented with two shorter 10-12 nt sense strands. This three-stranded construct, termed small internally segmented interfering RNA (sisiRNA), is highly functional demonstrating that an intact sense strand is not a prerequisite for RNA interference. Moreover, when using the sisiRNA design only the antisense strand is functional in activated RISC thereby completely eliminating unintended mRNA targeting by the sense strand. Interestingly, the sisiRNA design supports the function of chemically modified antisense strands, which are non-functional within the context of standard siRNA designs. This suggests that the sisiRNA design has a clear potential of improving the pharmacokinetic properties of siRNA in vivo.


RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system.

  • Kenneth A Howard‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2006‎

This work introduces a novel chitosan-based siRNA nanoparticle delivery system for RNA interference in vitro and in vivo. The formation of interpolyelectrolyte complexes between siRNA duplexes (21-mers) and chitosan polymer into nanoparticles, ranging from 40 to 600 nm, was shown using atomic force microscopy and photon correlation spectroscopy. Rapid uptake (1 h) of Cy5-labeled nanoparticles into NIH 3T3 cells, followed by accumulation over a 24 h period, was visualized using fluorescence microscopy. Nanoparticle-mediated knockdown of endogenous enhanced green fluorescent protein (EGFP) was demonstrated in both H1299 human lung carcinoma cells and murine peritoneal macrophages (77.9% and 89.3% reduction in EGFP fluorescence, respectively). In addition, Western analysis showed approximately 90% reduced expression of BCR/ABL-1 leukemia fusion protein while BCR expression was unaffected in K562 (Ph(+)) cells after transfection using nanoparticles containing siRNA specific to the BCR/ABL-1 junction sequence. Effective in vivo RNA interference was achieved in bronchiole epithelial cells of transgenic EGFP mice after nasal administration of chitosan/siRNA formulations (37% and 43% reduction compared to mismatch and untreated control, respectively). These findings highlight the potential application of this novel chitosan-based system in RNA-mediated therapy of systemic and mucosal disease.


Early Life Vitamin C Deficiency Does Not Alter Morphology of Hippocampal CA1 Pyramidal Neurons or Markers of Synaptic Plasticity in a Guinea Pig Model.

  • Stine N Hansen‎ et al.
  • Nutrients‎
  • 2018‎

Approximately 15% of the Western world population, including pregnant women and their children, is characterized as vitamin C (vitC) deficient. In guinea pigs, early life vitC deficiency causes spatial memory deficits, decreased hippocampal volume and neuron numbers, in otherwise clinically healthy animals. We hypothesized that vitC deficiency leads to decreased brain-derived neurotrophic factor and synaptic plasticity markers in selected brain areas (frontal cortex, hippocampus and striatum) and cause morphological changes in cornu ammonis 1 pyramidal neurons of the hippocampus either through a direct effect or indirectly by increased oxidative stress. Fifty-seven female guinea pigs were allocated to three groups receiving either 1390, 100 or 0⁻50 mg vitC/kg feed for 11 weeks. Dietary vitC levels were reflected in the plasma, cortical and adrenal gland levels, however, redox imbalance was only present in the adrenal glands allowing for the investigation of a direct influence of vitC deficiency on the chosen parameters in the brain. Synaptic plasticity markers were not affected in the investigated brain areas and no differences in isolated pyramidal neuron morphology was recorded. Based on our findings, it appears that vitC deficiency may primarily elicit impaired neuronal function through increased levels of oxidative stress.


Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1.

  • Thaneas Prabakaran‎ et al.
  • The EMBO journal‎
  • 2018‎

Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy-associated vesicles. Thus, DNA sensing induces the cGAS-STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.


TLR9 agonist MGN1703 enhances B cell differentiation and function in lymph nodes.

  • Mariane H Schleimann‎ et al.
  • EBioMedicine‎
  • 2019‎

TLR9 agonists are being developed as immunotherapy against malignancies and infections. TLR9 is primarily expressed in B cells and plasmacytoid dendritic cells (pDCs). TLR9 signalling may be critically important for B cell activity in lymph nodes but little is known about the in vivo impact of TLR9 agonism on human lymph node B cells. As a pre-defined sub-study within our clinical trial investigating TLR9 agonist MGN1703 (lefitolimod) treatment in the context of developing HIV cure strategies (NCT02443935), we assessed TLR9 agonist-mediated effects in lymph nodes.


Stroke infarct volume estimation in fixed tissue: Comparison of diffusion kurtosis imaging to diffusion weighted imaging and histology in a rodent MCAO model.

  • Vibeke Bay‎ et al.
  • PloS one‎
  • 2018‎

Diffusion kurtosis imaging (DKI) is a new promising MRI technique with microstructural sensitivity superior to conventional diffusion tensor (DTI) based methods. In stroke, considerable mismatch exists between the infarct lesion outline obtained from the two methods, kurtosis and diffusion tensor derived metrics. We aim to investigate if this mismatch can be examined in fixed tissue. Our investigation is based on estimates of mean diffusivity (MD) and mean (of the) kurtosis tensor (MKT) obtained using recent fast DKI methods requiring only 19 images. At 24 hours post stroke, rat brains were fixed and prepared. The infarct was clearly visible in both MD and MKT maps. The MKT lesion volume was roughly 31% larger than the MD lesion volume. Subsequent histological analysis (hematoxylin) revealed similar lesion volumes to MD. Our study shows that structural components underlying the MD/MKT mismatch can be investigated in fixed tissue and therefore allows a more direct comparison between lesion volumes from MRI and histology. Additionally, the larger MKT infarct lesion indicates that MKT do provide increased sensitivity to microstructural changes in the lesion area compared to MD.


Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory.

  • Lasse S Kristensen‎ et al.
  • Nature communications‎
  • 2020‎

Circular RNAs (circRNAs) have recently gained substantial attention in the cancer research field where most, including the putative oncogene ciRS-7 (CDR1as), have been proposed to function as competitive endogenous RNAs (ceRNAs) by sponging specific microRNAs. Here, we report the first spatially resolved cellular expression patterns of ciRS-7 in colon cancer and show that ciRS-7 is completely absent in the cancer cells, but highly expressed in stromal cells within the tumor microenvironment. Additionally, our data suggest that this generally apply to classical oncogene-driven adenocarcinomas, but not to other cancers, including malignant melanoma. Moreover, we find that correlations between circRNA and mRNA expression, which are commonly interpreted as evidence of a ceRNA function, can be explained by different cancer-to-stromal cell ratios among the studied tumor specimens. Together, these results have wide implications for future circRNA studies and highlight the importance of spatially resolving expression patterns of circRNAs proposed to function as ceRNAs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: