Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 86 papers

DNA Methylation Analysis of BRD1 Promoter Regions and the Schizophrenia rs138880 Risk Allele.

  • Mads Dyrvig‎ et al.
  • PloS one‎
  • 2017‎

The bromodomain containing 1 gene, BRD1 is essential for embryogenesis and CNS development. It encodes a protein that participates in histone modifying complexes and thereby regulates the expression of a large number of genes. Genetic variants in the BRD1 locus show association with schizophrenia and bipolar disorder and risk alleles in the promoter region correlate with reduced BRD1 expression. Insights into the transcriptional regulation of BRD1 and the pathogenic mechanisms associated with BRD1 risk variants, however, remain sparse. By studying transcripts in human HeLa and SH-SY5Y cells we provide evidence for differences in relative expression of BRD1 transcripts with three alternative 5' UTRs (exon 1C, 1B, and 1A). We further show that expression of these transcript variants covaries negatively with DNA methylation proportions in their upstream promoter regions suggesting that promoter usage might be regulated by DNA methylation. In line with findings that the risk allele of the rs138880 SNP in the BRD1 promoter region correlates with reduced BRD1 expression, we find that it is also associated with moderate regional BRD1 promoter hypermethylation in both adipose tissue and blood. Importantly, we demonstrate by inspecting available DNA methylation and expression data that these regions undergo changes in methylation during fetal brain development and that differences in their methylation proportions in fetal compared to postnatal frontal cortex correlate significantly with BRD1 expression. These findings suggest that BRD1 may be dysregulated in both the developing and mature brain of risk allele carriers. Finally, we demonstrate that commonly used mood stabilizers Lithium, Valproate, and Carbamazepine affect the expression of BRD1 in SH-SY5Y cells. Altogether this study indicates a link between genetic risk and epigenetic dysregulation of BRD1 which raises interesting perspectives for targeting the mechanisms pharmacologically.


Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death.

  • Mette Nyegaard‎ et al.
  • American journal of human genetics‎
  • 2012‎

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2 calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac death.


Polymorphism in serotonin receptor 3B is associated with pain catastrophizing.

  • Emilia Horjales-Araujo‎ et al.
  • PloS one‎
  • 2013‎

Pain catastrophizing, a coping style characterized by excessively negative thoughts and emotions in relation to pain, is one of the psychological factors that most markedly predicts variability in the perception of pain; however, only little is known about the underlying neurobiology. The aim of this study was to test for associations between psychological variables, such as pain catastrophizing, anxiety and depression, and selected polymorphisms in genes related to monoaminergic neurotransmission, in particular serotonin pathway genes. Three hundred seventy-nine healthy participants completed a set of psychological questionnaires: the Pain Catastrophizing Scale (PCS), the State-Trait Anxiety Inventory and Beck's Depression Inventory, and were genotyped for 15 single nucleotide polymorphisms (SNPs) in nine genes. The SNP rs1176744 located in the serotonin receptor 3B gene (5-HTR3B) was found to be associated with pain catastrophizing scores: both the global score and the subscales of magnification and helplessness. This is the first study to show an association between 5-HTR3B and PCS scores, thus suggesting a role of the serotonin pathway in pain catastrophizing. Since 5-HTR3B has previously been associated with descending pain modulation pathways, future studies will be of great interest to elucidate the molecular pathways involved in the relation between serotonin, its receptors and pain catastrophizing.


Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq.

  • Anto P Rajkumar‎ et al.
  • BMC genomics‎
  • 2015‎

Massively parallel cDNA sequencing (RNA-seq) experiments are gradually superseding microarrays in quantitative gene expression profiling. However, many biologists are uncertain about the choice of differentially expressed gene (DEG) analysis methods and the validity of cost-saving sample pooling strategies for their RNA-seq experiments. Hence, we performed experimental validation of DEGs identified by Cuffdiff2, edgeR, DESeq2 and Two-stage Poisson Model (TSPM) in a RNA-seq experiment involving mice amygdalae micro-punches, using high-throughput qPCR on independent biological replicate samples. Moreover, we sequenced RNA-pools and compared their results with sequencing corresponding individual RNA samples.


A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder.

  • Joanna Martin‎ et al.
  • Biological psychiatry‎
  • 2018‎

Attention-deficit/hyperactivity disorder (ADHD) shows substantial heritability and is two to seven times more common in male individuals than in female individuals. We examined two putative genetic mechanisms underlying this sex bias: sex-specific heterogeneity and higher burden of risk in female cases.


Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression.

  • Naomi R Wray‎ et al.
  • Nature genetics‎
  • 2018‎

Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association meta-analysis based in 135,458 cases and 344,901 controls and identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relationships of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal, whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine the basis of major depression and imply that a continuous measure of risk underlies the clinical phenotype.


International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci.

  • Caroline M Nievergelt‎ et al.
  • Nature communications‎
  • 2019‎

The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5-20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson's disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.


Shared genetic background between children and adults with attention deficit/hyperactivity disorder.

  • Paula Rovira‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2020‎

Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by age-inappropriate symptoms of inattention, impulsivity, and hyperactivity that persist into adulthood in the majority of the diagnosed children. Despite several risk factors during childhood predicting the persistence of ADHD symptoms into adulthood, the genetic architecture underlying the trajectory of ADHD over time is still unclear. We set out to study the contribution of common genetic variants to the risk for ADHD across the lifespan by conducting meta-analyses of genome-wide association studies on persistent ADHD in adults and ADHD in childhood separately and jointly, and by comparing the genetic background between them in a total sample of 17,149 cases and 32,411 controls. Our results show nine new independent loci and support a shared contribution of common genetic variants to ADHD in children and adults. No subgroup heterogeneity was observed among children, while this group consists of future remitting and persistent individuals. We report similar patterns of genetic correlation of ADHD with other ADHD-related datasets and different traits and disorders among adults, children, and when combining both groups. These findings confirm that persistent ADHD in adults is a neurodevelopmental disorder and extend the existing hypothesis of a shared genetic architecture underlying ADHD and different traits to a lifespan perspective.


Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology.

  • Niamh Mullins‎ et al.
  • Nature genetics‎
  • 2021‎

Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.


Investigating Shared Genetic Basis Across Tourette Syndrome and Comorbid Neurodevelopmental Disorders Along the Impulsivity-Compulsivity Spectrum.

  • Zhiyu Yang‎ et al.
  • Biological psychiatry‎
  • 2021‎

Tourette syndrome (TS) is often found comorbid with other neurodevelopmental disorders across the impulsivity-compulsivity spectrum, with attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) as most prevalent. This points to the possibility of a common etiological thread along an impulsivity-compulsivity continuum.


DNA methylation of the KLK8 gene in depression symptomatology.

  • Anna Starnawska‎ et al.
  • Clinical epigenetics‎
  • 2021‎

Depression is a common, complex, and debilitating mental disorder estimated to be under-diagnosed and insufficiently treated in society. Liability to depression is influenced by both genetic and environmental risk factors, which are both capable of impacting DNA methylation (DNAm). Accordingly, numerous studies have researched for DNAm signatures of this disorder. Recently, an epigenome-wide association study of monozygotic twins identified an association between DNAm status in the KLK8 (neuropsin) promoter region and severity of depression symptomatology.


Discordant associations of educational attainment with ASD and ADHD implicate a polygenic form of pleiotropy.

  • Ellen Verhoef‎ et al.
  • Nature communications‎
  • 2021‎

Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) are complex co-occurring neurodevelopmental conditions. Their genetic architectures reveal striking similarities but also differences, including strong, discordant polygenic associations with educational attainment (EA). To study genetic mechanisms that present as ASD-related positive and ADHD-related negative genetic correlations with EA, we carry out multivariable regression analyses using genome-wide summary statistics (N = 10,610-766,345). Our results show that EA-related genetic variation is shared across ASD and ADHD architectures, involving identical marker alleles. However, the polygenic association profile with EA, across shared marker alleles, is discordant for ASD versus ADHD risk, indicating independent effects. At the single-variant level, our results suggest either biological pleiotropy or co-localisation of different risk variants, implicating MIR19A/19B microRNA mechanisms. At the polygenic level, they point to a polygenic form of pleiotropy that contributes to the detectable genome-wide correlation between ASD and ADHD and is consistent with effect cancellation across EA-related regions.


Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors.

  • Niamh Mullins‎ et al.
  • Biological psychiatry‎
  • 2022‎

Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders.


Translating polygenic risk scores for clinical use by estimating the confidence bounds of risk prediction.

  • Jiangming Sun‎ et al.
  • Nature communications‎
  • 2021‎

A promise of genomics in precision medicine is to provide individualized genetic risk predictions. Polygenic risk scores (PRS), computed by aggregating effects from many genomic variants, have been developed as a useful tool in complex disease research. However, the application of PRS as a tool for predicting an individual's disease susceptibility in a clinical setting is challenging because PRS typically provide a relative measure of risk evaluated at the level of a group of people but not at individual level. Here, we introduce a machine-learning technique, Mondrian Cross-Conformal Prediction (MCCP), to estimate the confidence bounds of PRS-to-disease-risk prediction. MCCP can report disease status conditional probability value for each individual and give a prediction at a desired error level. Moreover, with a user-defined prediction error rate, MCCP can estimate the proportion of sample (coverage) with a correct prediction.


Genome-wide association study in individuals of European and African ancestry and multi-trait analysis of opioid use disorder identifies 19 independent genome-wide significant risk loci.

  • Joseph D Deak‎ et al.
  • Molecular psychiatry‎
  • 2022‎

Despite the large toll of opioid use disorder (OUD), genome-wide association studies (GWAS) of OUD to date have yielded few susceptibility loci. We performed a large-scale GWAS of OUD in individuals of European (EUR) and African (AFR) ancestry, optimizing genetic informativeness by performing MTAG (Multi-trait analysis of GWAS) with genetically correlated substance use disorders (SUDs). Meta-analysis included seven cohorts: the Million Veteran Program, Psychiatric Genomics Consortium, iPSYCH, FinnGen, Partners Biobank, BioVU, and Yale-Penn 3, resulting in a total N = 639,063 (Ncases = 20,686;Neffective = 77,026) across ancestries. OUD cases were defined as having a lifetime OUD diagnosis, and controls as anyone not known to meet OUD criteria. We estimated SNP-heritability (h2SNP) and genetic correlations (rg). Based on genetic correlation, we performed MTAG on OUD, alcohol use disorder (AUD), and cannabis use disorder (CanUD). A leave-one-out polygenic risk score (PRS) analysis was performed to compare OUD and OUD-MTAG PRS as predictors of OUD case status in Yale-Penn 3. The EUR meta-analysis identified three genome-wide significant (GWS; p ≤ 5 × 10-8) lead SNPs-one at FURIN (rs11372849; p = 9.54 × 10-10) and two OPRM1 variants (rs1799971, p = 4.92 × 10-09; rs79704991, p = 1.11 × 10-08; r2 = 0.02). Rs1799971 (p = 4.91 × 10-08) and another OPRM1 variant (rs9478500; p = 1.95 × 10-08; r2 = 0.03) were identified in the cross-ancestry meta-analysis. Estimated h2SNP was 12.75%, with strong rg with CanUD (rg = 0.82; p = 1.14 × 10-47) and AUD (rg = 0.77; p = 6.36 × 10-78). The OUD-MTAG resulted in a GWAS Nequivalent = 128,748 and 18 independent GWS loci, some mapping to genes or gene regions that have previously been associated with psychiatric or addiction phenotypes. The OUD-MTAG PRS accounted for 3.81% of OUD variance (beta = 0.61;s.e. = 0.066; p = 2.00 × 10-16) compared to 2.41% (beta = 0.45; s.e. = 0.058; p = 2.90 × 10-13) explained by the OUD PRS. The current study identified OUD variant associations at OPRM1, single variant associations with FURIN, and 18 GWS associations in the OUD-MTAG. The genetic architecture of OUD is likely influenced by both OUD-specific loci and loci shared across SUDs.


Multi-polygenic scores in psychiatry: From disorder specific to transdiagnostic perspectives.

  • Yingjie Shi‎ et al.
  • American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics‎
  • 2024‎

The dense co-occurrence of psychiatric disorders questions the categorical classification tradition and motivates efforts to establish dimensional constructs with neurobiological foundations that transcend diagnostic boundaries. In this study, we examined the genetic liability for eight major psychiatric disorder phenotypes under both a disorder-specific and a transdiagnostic framework. The study sample (n = 513) was deeply phenotyped, consisting of 452 patients from tertiary care with mood disorders, anxiety disorders (ANX), attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders, and/or substance use disorders (SUD) and 61 unaffected comparison individuals. We computed subject-specific polygenic risk score (PRS) profiles and assessed their associations with psychiatric diagnoses, comorbidity status, as well as cross-disorder behavioral dimensions derived from a rich battery of psychopathology assessments. High PRSs for depression were unselectively associated with the diagnosis of SUD, ADHD, ANX, and mood disorders (p < 1e-4). In the dimensional approach, four distinct functional domains were uncovered, namely the negative valence, social, cognitive, and regulatory systems, closely matching the major functional domains proposed by the Research Domain Criteria (RDoC) framework. Critically, the genetic predisposition for depression was selectively reflected in the functional aspect of negative valence systems (R2  = 0.041, p = 5e-4) but not others. This study adds evidence to the ongoing discussion about the misalignment between current psychiatric nosology and the underlying psychiatric genetic etiology and underscores the effectiveness of the dimensional approach in both the functional characterization of psychiatric patients and the delineation of the genetic liability for psychiatric disorders.


Postpartum and non-postpartum depression: a population-based matched case-control study comparing polygenic risk scores for severe mental disorders.

  • Trine Munk-Olsen‎ et al.
  • Translational psychiatry‎
  • 2023‎

It remains inconclusive whether postpartum depression (PPD) and depression with onset outside the postpartum period (MDD) are genetically distinct disorders. We aimed to investigate whether polygenic risk scores (PGSs) for major mental disorders differ between PPD cases and MDD cases in a nested case-control study of 50,057 women born from 1981 to 1997 in the iPSYCH2015 sample in Demark. We identified 333 women with first-onset postpartum depression (PPD group), who were matched with 993 women with first-onset depression diagnosed outside of postpartum (MDD group), and 999 female population controls. Data on genetics and depressive disorders were retrieved from neonatal biobanks and the Psychiatric Central Research Register. PGSs were calculated from both individual-level genetic data and meta-analysis summary statistics from the Psychiatric Genomics Consortium. Conditional logistic regression was used to calculate the odds ratio (OR), accounting for the selection-related reproductive behavior. After adjustment for covariates, higher PGSs for severe mental disorders were associated with increased ORs of both PPD and MDD. Compared with MDD cases, MDD PGS and attention-deficit/hyperactivity disorder PGS were marginally but not statistically higher for PPD cases, with the OR of PPD versus MDD being 1.12 (95% CI: 0 .97-1.29) and 1.11 (0.97-1.27) per-standard deviation increase, respectively. The ORs of PPD versus MDD did not statistically differ by PGSs of bipolar disorder, schizophrenia, or autism spectrum disorder. Our findings suggest that relying on PGS data, there was no clear evidence of distinct genetic make-up of women with depression occurring during or outside postpartum, after taking the selection-related reproductive behavior into account.


The correlates of neonatal complement component 3 and 4 protein concentrations with a focus on psychiatric and autoimmune disorders.

  • Nis Borbye-Lorenzen‎ et al.
  • Cell genomics‎
  • 2023‎

Complement components have been linked to schizophrenia and autoimmune disorders. We examined the association between neonatal circulating C3 and C4 protein concentrations in 68,768 neonates and the risk of six mental disorders. We completed genome-wide association studies (GWASs) for C3 and C4 and applied the summary statistics in Mendelian randomization and phenome-wide association studies related to mental and autoimmune disorders. The GWASs for C3 and C4 protein concentrations identified 15 and 36 independent loci, respectively. We found no associations between neonatal C3 and C4 concentrations and mental disorders in the total sample (both sexes combined); however, post-hoc analyses found that a higher C3 concentration was associated with a reduced risk of schizophrenia in females. Mendelian randomization based on C4 summary statistics found an altered risk of five types of autoimmune disorders. Our study adds to our understanding of the associations between C3 and C4 concentrations and subsequent mental and autoimmune disorders.


Linkage disequilibrium mapping of a breast cancer susceptibility locus near RAI/PPP1R13L/iASPP.

  • Bjørn A Nexø‎ et al.
  • BMC medical genetics‎
  • 2008‎

Previous results have suggested an association of the region of 19q13.3 with several forms of cancer. In the present study, we investigated 27 public markers within a previously identified 69 kb stretch of chromosome 19q for association with breast cancer by using linkage disequilibrium mapping. The study groups included 434 postmenopausal breast cancer cases and an identical number of individually matched controls.


Exploring genetic variation that influences brain methylation in attention-deficit/hyperactivity disorder.

  • Laura Pineda-Cirera‎ et al.
  • Translational psychiatry‎
  • 2019‎

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder caused by an interplay of genetic and environmental factors. Epigenetics is crucial to lasting changes in gene expression in the brain. Recent studies suggest a role for DNA methylation in ADHD. We explored the contribution to ADHD of allele-specific methylation (ASM), an epigenetic mechanism that involves SNPs correlating with differential levels of DNA methylation at CpG sites. We selected 3896 tagSNPs reported to influence methylation in human brain regions and performed a case-control association study using the summary statistics from the largest GWAS meta-analysis of ADHD, comprising 20,183 cases and 35,191 controls. We observed that genetic risk variants for ADHD are enriched in ASM SNPs and identified associations with eight tagSNPs that were significant at a 5% false discovery rate (FDR). These SNPs correlated with methylation of CpG sites lying in the promoter regions of six genes. Since methylation may affect gene expression, we inspected these ASM SNPs together with 52 ASM SNPs in high LD with them for eQTLs in brain tissues and observed that the expression of three of those genes was affected by them. ADHD risk alleles correlated with increased expression (and decreased methylation) of ARTN and PIDD1 and with a decreased expression (and increased methylation) of C2orf82. Furthermore, these three genes were predicted to have altered expression in ADHD, and genetic variants in C2orf82 correlated with brain volumes. In summary, we followed a systematic approach to identify risk variants for ADHD that correlated with differential cis-methylation, identifying three novel genes contributing to the disorder.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: