Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA.

  • Olga A Timofeeva‎ et al.
  • The Journal of biological chemistry‎
  • 2012‎

Phosphorylation of signal transducer and activator of transcription 3 (STAT3) on a single tyrosine residue in response to growth factors, cytokines, interferons, and oncogenes activates its dimerization, translocation to the nucleus, binding to the interferon γ (gamma)-activated sequence (GAS) DNA-binding site and activation of transcription of target genes. STAT3 is constitutively phosphorylated in various cancers and drives gene expression from GAS-containing promoters to promote tumorigenesis. Recently, roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in maintenance of heterochromatin stability. However, the mechanisms underlying U-STAT3 binding to DNA has not been fully investigated. Here, we explore STAT3-DNA interactions by atomic force microscopy (AFM) imaging. We observed that U-STAT3 molecules bind to the GAS DNA-binding site as dimers and monomers. In addition, we observed that U-STAT3 binds to AT-rich DNA sequence sites and recognizes specific DNA structures, such as 4-way junctions and DNA nodes, within negatively supercoiled plasmid DNA. These structures are important for chromatin organization and our data suggest a role for U-STAT3 as a chromatin/genome organizer. Unexpectedly, we found that a C-terminal truncated 67.5-kDa STAT3 isoform recognizes single-stranded spacers within cruciform structures that also have a role in chromatin organization and gene expression. This isoform appears to be abundant in the nuclei of cancer cells and, therefore, may have a role in regulation of gene expression. Taken together, our data highlight novel mechanisms by which U-STAT3 binds to DNA and supports U-STAT3 function as a transcriptional activator and a chromatin/genomic organizer.


Dysuria Following Stereotactic Body Radiation Therapy for Prostate Cancer.

  • Einsley-Marie Janowski‎ et al.
  • Frontiers in oncology‎
  • 2015‎

Dysuria following prostate radiation therapy is a common toxicity that adversely affects patients' quality of life and may be difficult to manage.


A postnatal peak in microglial development in the mouse hippocampus is correlated with heightened sensitivity to seizure triggers.

  • Iris Kim‎ et al.
  • Brain and behavior‎
  • 2015‎

Explosive synaptogenesis and synaptic pruning occur in the hippocampus during the first two weeks of postnatal life, coincident with a heightened susceptibility to seizures in rodents. To determine the temporal correlation between microglial development and age-dependent susceptibility and response to seizures, we quantified developmental changes in basal microglia levels and seizure-induced microglial activation in the hippocampus of Cx3Cr1(GFP /+) transgenic mice.


ROCK inhibitor reduces Myc-induced apoptosis and mediates immortalization of human keratinocytes.

  • Aleksandra Dakic‎ et al.
  • Oncotarget‎
  • 2016‎

The Myc/Max/Mad network plays a critical role in cell proliferation, differentiation and apoptosis and c-Myc is overexpressed in many cancers, including HPV-positive cervical cancer cell lines. Despite the tolerance of cervical cancer keratinocytes to high Myc expression, we found that the solitary transduction of the Myc gene into primary cervical and foreskin keratinocytes induced rapid cell death. These findings suggested that the anti-apoptotic activity of E7 in cervical cancer cells might be responsible for negating the apoptotic activity of over-expressed Myc. Indeed, our earlier in vitro studies demonstrated that Myc and E7 synergize in the immortalization of keratinocytes. Since we previously postulated that E7 and the ROCK inhibitor, Y-27632, were members of the same functional pathway in cell immortalization, we tested whether Y-27632 would inhibit apoptosis induced by the over-expression of Myc. Our findings indicate that Y-27632 rapidly inhibited Myc-induced membrane blebbing and cellular apoptosis and, more generally, functioned as an inhibitor of extrinsic and intrinsic pathways of cell death. Most important, Y-27632 cooperated with Myc to immortalize keratinocytes efficiently, indicating that apoptosis is a major barrier to Myc-induced immortalization of keratinocytes. The anti-apoptotic activity of Y-27632 correlated with a reduction in p53 serine 15 phosphorylation and the consequent reduction in the expression of downstream target genes p21 and DAPK1, two genes involved in the induction of cell death.


Colon Transcriptomics Reveals Sex-Dependent Metabolic Signatures in Response to 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine Treatment in C57BL/6N Mice.

  • Jeong Hoon Pan‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Diets high in red meats, particularly meats cooked at high temperature, increase the risk of colon cancer due to a production of heterocyclic aromatic amines (HAAs). Of the identified HAAs, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is the most mass abundant colon carcinogen in charred meat or fish. Here, we comprehensively examined sex-dependent colon transcriptome signatures in response to PhIP treatment to identify biological discrepancies. Eight-week-old male and female C57BL/6N mice were intraperitoneally injected with PhIP (10 mg/kg of body weight) and colon tissues were harvested 24 h after PhIP injection, followed by colon transcriptomics analysis. A list of differentially expressed genes (DEGs) was utilized for computational bioinformatic analyses. Specifically, overrepresentation test using the Protein Analysis Through Evolutionary Relationships tool was carried out to annotate sex-dependent changes in transcriptome signatures after PhIP treatment. Additionally, the most significantly affected canonical pathways by PhIP treatment were predicted using the Ingenuity Pathway Analysis. As results, male and female mice presented different metabolic signatures in the colon transcriptome. In the male mice, oxidative phosphorylation in the mitochondrial respiratory chain was the pathway impacted the most; this might be due to a shortage of ATP for DNA repair. On the other hand, the female mice showed concurrent activation of lipolysis and adipogenesis. The present study provides the foundational information for future studies of PhIP effects on underlying sex-dependent mechanisms.


LncRNA CRLM1 inhibits apoptosis and promotes metastasis through transcriptional regulation cooperated with hnRNPK in colorectal cancer.

  • Zhe Wang‎ et al.
  • Cell & bioscience‎
  • 2022‎

Colorectal liver metastases (CRLM) continue to have a low survival rate. The number of CRLM regulators and clinical indicators remains limited. Long non-coding RNAs (lncRNAs) are a new master regulator of cell invasion and metastasis. However, the function and regulation mechanism of lncRNAs in colorectal cancer (CRC) metastasis are yet unknown.


The induction of the p53 tumor suppressor protein bridges the apoptotic and autophagic signaling pathways to regulate cell death in prostate cancer cells.

  • Lymor Ringer‎ et al.
  • Oncotarget‎
  • 2014‎

The p53 tumor suppressor protein plays a crucial role in influencing cell fate decisions in response to cellular stress. As p53 elicits cell cycle arrest, senescence or apoptosis, the integrity of the p53 pathway is considered a key determinant of anti-tumor responses. p53 can also promote autophagy, however the role of p53-dependent autophagy in chemosensitivity is poorly understood. VMY-1-103 (VMY), a dansylated analog of purvalanol B, displays rapid and potent anti-tumor activities, however the pathways by which VMY works are not fully defined. Using established prostate cancer cell lines and novel conditionally reprogrammed cells (CRCs) derived from prostate cancer patients; we have defined the mechanisms of VMY-induced prostate cancer cell death. Herein, we show that the cytotoxic effects of VMY required a p53-dependent induction of autophagy, and that inhibition of autophagy abrogated VMY-induced cell death. Cancer cell lines harboring p53 missense mutations evaded VMY toxicity and treatment with a small molecule compound that restores p53 activity re-established VMY-induced cell death. The elucidation of the molecular mechanisms governing VMY-dependent cell death in cell lines, and importantly in CRCs, provides the rationale for clinical studies of VMY, alone or in combination with p53 reactivating compounds, in human prostate cancer.


Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer.

  • Olga A Timofeeva‎ et al.
  • Oncotarget‎
  • 2017‎

Our previous study demonstrated that conditional reprogramming (CR) allows the establishment of patient-derived normal and tumor epithelial cell cultures from a variety of tissue types including breast, lung, colon and prostate. Using CR, we have established matched normal and tumor cultures, GUMC-29 and GUMC-30 respectively, from a patient's prostatectomy specimen. These CR cells proliferate indefinitely in vitro and retain stable karyotypes. Most importantly, only tumor-derived CR cells (GUMC-30) produced tumors in xenografted SCID mice, demonstrating maintenance of the critical tumor phenotype. Characterization of cells with DNA fingerprinting demonstrated identical patterns in normal and tumor CR cells as well as in xenografted tumors. By flow cytometry, both normal and tumor CR cells expressed basal, luminal, and stem cell markers, with the majority of the normal and tumor CR cells expressing prostate basal cell markers, CD44 and Trop2, as well as luminal marker, CD13, suggesting a transit-amplifying phenotype. Consistent with this phenotype, real time RT-PCR analyses demonstrated that CR cells predominantly expressed high levels of basal cell markers (KRT5, KRT14 and p63), and low levels of luminal markers. When the CR tumor cells were injected into SCID mice, the expression of luminal markers (AR, NKX3.1) increased significantly, while basal cell markers dramatically decreased. These data suggest that CR cells maintain high levels of proliferation and low levels of differentiation in the presence of feeder cells and ROCK inhibitor, but undergo differentiation once injected into SCID mice. Genomic analyses, including SNP and INDEL, identified genes mutated in tumor cells, including components of apoptosis, cell attachment, and hypoxia pathways. The use of matched patient-derived cells provides a unique in vitro model for studies of early prostate cancer.


Intensity-Modulated Radiation Therapy with Stereotactic Body Radiation Therapy Boost for Unfavorable Prostate Cancer: A Report on 3-Year Toxicity.

  • Ima Paydar‎ et al.
  • Frontiers in oncology‎
  • 2017‎

Recent data suggest that intensity-modulated radiation therapy (IMRT) plus brachytherapy boost for unfavorable prostate cancer provides improved biochemical relapse-free survival over IMRT alone. Stereotactic body radiation therapy (SBRT) may be a less invasive alternative to brachytherapy boost. Here, we report the 3-year gastrointestinal (GI) and genitourinary (GU) toxicities of IMRT plus SBRT boost.


Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing.

  • Saravana P Selvanathan‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

The synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based on proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncoprotein with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate the effect of EWS-FLI1 on posttranscriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis, including CLK1, CASP3, PPFIBP1, and TERT, validate as alternatively spliced by EWS-FLI1. In a CLIP-seq experiment, we find that EWS-FLI1 RNA-binding motifs most frequently occur adjacent to intron-exon boundaries. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNP K, and PRPF6. Reduction of EWS-FLI1 produces an isoform of γ-TERT that has increased telomerase activity compared with wild-type (WT) TERT. The small molecule YK-4-279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions, including helicases DDX5 and RNA helicase A (RHA) that alters RNA-splicing ratios. As such, YK-4-279 validates the splicing mechanism of EWS-FLI1, showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells (hMSC). Exon array analysis of 75 ES patient samples shows similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing toward oncogenesis, and, reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code.


ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells.

  • Xuefeng Liu‎ et al.
  • The American journal of pathology‎
  • 2012‎

We demonstrate that a Rho kinase inhibitor (Y-27632), in combination with fibroblast feeder cells, induces normal and tumor epithelial cells from many tissues to proliferate indefinitely in vitro, without transduction of exogenous viral or cellular genes. Primary prostate and mammary cells, for example, are reprogrammed toward a basaloid, stem-like phenotype and form well-organized prostaspheres and mammospheres in Matrigel. However, in contrast to the selection of rare stem-like cells, the described growth conditions can generate 2 × 10(6) cells in 5 to 6 days from needle biopsies, and can generate cultures from cryopreserved tissue and from fewer than four viable cells. Continued cell proliferation is dependent on both feeder cells and Y-27632, and the conditionally reprogrammed cells (CRCs) retain a normal karyotype and remain nontumorigenic. This technique also efficiently establishes cell cultures from human and rodent tumors. For example, CRCs established from human prostate adenocarcinoma displayed instability of chromosome 13, proliferated abnormally in Matrigel, and formed tumors in mice with severe combined immunodeficiency. The ability to rapidly generate many tumor cells from small biopsy specimens and frozen tissue provides significant opportunities for cell-based diagnostics and therapeutics (including chemosensitivity testing) and greatly expands the value of biobanking. In addition, the CRC method allows for the genetic manipulation of epithelial cells ex vivo and their subsequent evaluation in vivo in the same host.


Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression.

  • Wei Xiang‎ et al.
  • Nature communications‎
  • 2018‎

Metabolic reprogramming greatly contributes to the regulation of macrophage activation. However, the mechanism of lipid accumulation and the corresponding function in tumor-associated macrophages (TAMs) remain unclear. With primary investigation in colon cancer and confirmation in other cancer models, here we determine that deficiency of monoacylglycerol lipase (MGLL) results in lipid overload in TAMs. Functionally, macrophage MGLL inhibits CB2 cannabinoid receptor-dependent tumor progression in inoculated and genetic cancer models. Mechanistically, MGLL deficiency promotes CB2/TLR4-dependent macrophage activation, which further suppresses the function of tumor-associated CD8+ T cells. Treatment with CB2 antagonists delays tumor progression in inoculated and genetic cancer models. Finally, we verify that expression of macrophage MGLL is decreased in cancer tissues and positively correlated with the survival of cancer patients. Taken together, our findings identify MGLL as a switch for CB2/TLR4-dependent macrophage activation and provide potential targets for cancer therapy.


Prognostic roles of Notch receptor mRNA expression in human ovarian cancer.

  • Chuan Chen‎ et al.
  • Oncotarget‎
  • 2017‎

Aberrant activation of Notch signaling pathway has been correlated with high grade ovarian carcinoma and carcinogenesis. However, the predictive and prognostic values of Notch signaling pathway in ovarian cancer patients remains unclear. We utilize "The Kaplan-Meier plotter" (KM plotter) background database to access the prognostic values including overall survival (OS), progression-free survival (PFS), as well as post-progression survival (PPS) of four Notch receptor mRNA expression in ovarian cancer patients. Notch1 mRNA high expression was not correlated with OS, PFS and PPS for all ovarian cancer patients, but significantly correlated with poor PFS in TP53 wild type and favorite PFS in TP53 mutation type ovarian cancer patients. Notch2 mRNA high expression was significantly correlated with poor PFS for all ovarian cancer patients, especially in grade II patients. Notch3 mRNA high expression was significantly correlated with favorite PFS for all ovarian cancer patients. Notch4 mRNA high expression was significantly correlated with favorite OS, but not PFS and PPS for all ovarian cancer patients. The results strongly support that there are distinct prognostic values of four Notch receptor mRNA expression in ovarian cancer patients.


The Ap-2α/Elk-1 axis regulates Sirpα-dependent tumor phagocytosis by tumor-associated macrophages in colorectal cancer.

  • Xiaojiao Wang‎ et al.
  • Signal transduction and targeted therapy‎
  • 2020‎

The inhibitory receptor signal regulatory protein-α (Sirpα) is a myeloid-specific immune checkpoint that engages the "don't eat me" signal CD47, which is expressed on tumor and normal tissue cells. However, the profile and regulatory mechanism of Sirpα expression in tumor-associated macrophages (TAMs) are still not clear. Here, we found that the expression of Sirpα in TAMs increased dynamically with colorectal cancer (CRC) progression. Mechanistically, CRC cell-derived lactate induced the nuclear translocation of the transcription factor Ap-2α from the cytoplasm in TAMs. Ap-2α functioned as a transcription factor for Elk-1 by binding to the conserved element GCCTGC located at -1396/-1391 in the mouse Elk-1 promoter. Subsequently, the Elk-1 protein bound to two conserved sites, CTTCCTACA (located at -229/-221) and CTTCCTCTC (located at -190/-182), in the mouse Sirpα promoter and promoted Sirpα expression in TAMs. Functionally, the macrophage-specific knockout of Ap-2α notably promoted the phagocytic activity of TAMs and suppressed CRC progression, whereas these effects were prevented by the transgenic macrophage-specific expression of Elk-1, which regulated TAM phagocytosis and CRC development in a Sirpα-dependent manner. Furthermore, we showed that Elk-1 expression was positively correlated with Sirpα expression in TAMs and was associated with poor survival in CRC patients. Taken together, our findings revealed a novel mechanism through which CRC evades innate immune surveillance and provided potential targets for macrophage-based immunotherapy for CRC patients.


Mesenchymal change and drug resistance in neuroblastoma.

  • Jessica A Naiditch‎ et al.
  • The Journal of surgical research‎
  • 2015‎

Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells.


Presynaptic CLC-3 determines quantal size of inhibitory transmission in the hippocampus.

  • Vladimir Riazanski‎ et al.
  • Nature neuroscience‎
  • 2011‎

The absence of the chloride channel CLC-3 in Clcn3(-/-) mice results in hippocampal degeneration with a distinct temporal-spatial sequence that resembles neuronal loss in temporal lobe epilepsy. We examined how the loss of CLC-3 might affect GABAergic synaptic transmission in the hippocampus. An electrophysiological study of synaptic function in hippocampal slices taken from Clcn3(-/-) mice before the onset of neurodegeneration revealed a substantial decrease in the amplitude and frequency of miniature inhibitory postsynaptic currents compared with those in wild-type slices. We found that CLC-3 colocalized with the vesicular GABA transporter VGAT in the CA1 region of the hippocampus. Acidification of inhibitory synaptic vesicles induced by Cl(-) showed a marked dependence on CLC-3 expression. The decrease in inhibitory transmission in Clcn3(-/-) mice suggests that the neurotransmitter loading of synaptic vesicles was reduced, which we attribute to defective vesicular acidification. Our observations extend the role of Cl(-) in inhibitory transmission from that of a postsynaptic permeant species to a presynaptic regulatory element.


Novel Paired Normal Prostate and Prostate Cancer Model Cell Systems Derived from African American Patients.

  • Mira Jung‎ et al.
  • Cancer research communications‎
  • 2022‎

Prostate cancer is the most frequently diagnosed solid malignancy in men. African American (AA) men are at greater risk for developing prostate cancer, and experience higher mortality rates, as compared with Caucasian American men. However, mechanistic studies to understand this health disparity have been limited by the lack of relevant in vitro and in vivo models. There is an urgent need for preclinical cellular models to investigate molecular mechanisms underlying prostate cancer in AA men. We collected clinical specimens from radical prostatectomies of AA patients and established 10 paired tumor-derived and normal epithelial cell cultures from the same donors, which were further cultivated to extend the growth under "conditional reprogramming." Clinical and cellular annotations characterized these model cells as intermediate risk and predominantly diploid. Immunocytochemical analyses demonstrated variable expression levels of luminal (CK8) and basal (CK5, p63) markers in both normal and tumor cells. However, expression levels of TOPK, c-MYC, and N-MYC were markedly increased only in tumor cells. To determine cell utility for drug testing, we examined viability of cells following exposure to the antiandrogen (bicalutamide) and two PARP inhibitors (olaparib and niraparib) and observed decreased viability of tumor-derived cells as compared with viability of normal prostate-derived cells.


Acute Urinary Morbidity Following Stereotactic Body Radiation Therapy for Prostate Cancer with Prophylactic Alpha-Adrenergic Antagonist and Urethral Dose Reduction.

  • Michael C Repka‎ et al.
  • Frontiers in oncology‎
  • 2016‎

Stereotactic body radiation therapy (SBRT) delivers high doses of radiation to the prostate while minimizing radiation to the adjacent critical organs. Large fraction sizes may increase urinary morbidity due to unavoidable treatment of the prostatic urethra. This study reports rates of acute urinary morbidity following SBRT for localized prostate cancer with prophylactic alpha-adrenergic antagonist utilization and urethral dose reduction (UDR).


Stereotactic body radiation therapy for liver metastases from colorectal cancer: analysis of safety, feasibility, and early outcomes.

  • Marie-Adele S Kress‎ et al.
  • Frontiers in oncology‎
  • 2012‎

Colorectal cancer (CRC) is the third leading cause of cancer-related death in the U.S. Many patients with CRC develop hepatic metastases as the sole site of metastases. Historical treatment options were limited to resection or conventional radiation therapy. Stereotactic body radiation therapy (SBRT) has emerged as a rational treatment approach. This study reviews our experience with SBRT for patients with liver metastases from CRC.


IRF4 is a key thermogenic transcriptional partner of PGC-1α.

  • Xingxing Kong‎ et al.
  • Cell‎
  • 2014‎

Brown fat can reduce obesity through the dissipation of calories as heat. Control of thermogenic gene expression occurs via the induction of various coactivators, most notably PGC-1α. In contrast, the transcription factor partner(s) of these cofactors are poorly described. Here, we identify interferon regulatory factor 4 (IRF4) as a dominant transcriptional effector of thermogenesis. IRF4 is induced by cold and cAMP in adipocytes and is sufficient to promote increased thermogenic gene expression, energy expenditure, and cold tolerance. Conversely, knockout of IRF4 in UCP1(+) cells causes reduced thermogenic gene expression and energy expenditure, obesity, and cold intolerance. IRF4 also induces the expression of PGC-1α and PRDM16 and interacts with PGC-1α, driving Ucp1 expression. Finally, cold, β-agonists, or forced expression of PGC-1α are unable to cause thermogenic gene expression in the absence of IRF4. These studies establish IRF4 as a transcriptional driver of a program of thermogenic gene expression and energy expenditure.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: