Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 69 papers

A simple and efficient method for generating human retinal organoids.

  • Florian Regent‎ et al.
  • Molecular vision‎
  • 2020‎

Retinal organoids (ROs) derived from human pluripotent stem cells largely recapitulate key features of in vivo retinal development, thus permitting the study of retinogenesis, disease modeling, and therapeutic development. However, the complexities of current protocols limit the use of this in vitro system in applications requiring large-scale production of organoids. Currently, widely used methods require the isolation of presumed optic vesicle-like structures from adherent cultures by dissection, a labor-intensive and time-consuming step that involves extensive practice and training.


Transcriptome-based molecular staging of human stem cell-derived retinal organoids uncovers accelerated photoreceptor differentiation by 9-cis retinal.

  • Koray D Kaya‎ et al.
  • Molecular vision‎
  • 2019‎

Retinal organoids generated from human pluripotent stem cells exhibit considerable variability during differentiation. Our goals are to assess developmental maturity of the neural retina in vitro and design improved protocols based on objective criteria.


Regulation of Noncoding Transcriptome in Developing Photoreceptors by Rod Differentiation Factor NRL.

  • Lina Zelinger‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2017‎

Transcriptome analysis by next generation sequencing allows qualitative and quantitative profiling of expression patterns associated with development and disease. However, most transcribed sequences do not encode proteins, and little is known about the functional relevance of noncoding (nc) transcriptome in neuronal subtypes. The goal of this study was to perform a comprehensive analysis of long noncoding (lncRNAs) and antisense (asRNAs) RNAs expressed in mouse retinal photoreceptors.


Divergent Effects of HSP70 Overexpression in Photoreceptors During Inherited Retinal Degeneration.

  • Ke Jiang‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2020‎

Disruption of proteostasis is a key event in many neurodegenerative diseases. Heat shock proteins (HSPs) participate in multiple functions associated with intracellular transport and proteostasis. We evaluated the effect of augmented HSP70 expression in mutant photoreceptors of mouse retinal degeneration models to test the hypothesis that failure to sustain HSP70 expression contributes to photoreceptor cell death.


Molecular dissection of cone photoreceptor-enriched genes encoding transmembrane and secretory proteins.

  • Samantha Papal‎ et al.
  • Journal of neuroscience research‎
  • 2019‎

Cone photoreceptors mediate color perception and daylight vision through intricate synaptic circuitry. In most mammalian retina, cones are greatly outnumbered by rods and exhibit inter-dependence for functional maintenance and survival. Currently, we have limited understanding of cone-specific molecular components that mediate response to extrinsic signaling factors or are involved in communication with rods and other retinal cells. To fulfill this gap, we compared the recently-published transcriptomes of developing S-cone-like photoreceptors from the Nrl-/- mouse retina with those of rods and identified candidate genes responsible for cone cell functions and communication. We generated an in silico expression profile of 823 genes that encode candidate transmembrane and secretory proteins and are up-regulated in Nrl-/- cone photoreceptors compared to wild type cones. In situ hybridization analysis validated high expression of seven of the selected candidate genes in the Nrl-/- retina. To examine their relevance to cone function, we performed in vivo knockdown of Epha10 in the Nrl-/- retina and demonstrated aberrant morphology and mislocalization of the photoreceptor cell bodies. Thus, the receptor tyrosine kinase Ephrin type-A receptor 10 appears to influence cone morphogenesis. Our studies reveal novel cone-enriched genes involved in interaction of cones with other retinal cell types and provide a framework for examining molecular pathways associated with intercellular communication.


Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks.

  • Rossukon Kaewkhaw‎ et al.
  • Stem cells (Dayton, Ohio)‎
  • 2015‎

The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures.


Ciliopathy-associated gene Cc2d2a promotes assembly of subdistal appendages on the mother centriole during cilia biogenesis.

  • Shobi Veleri‎ et al.
  • Nature communications‎
  • 2014‎

The primary cilium originates from the mother centriole and participates in critical functions during organogenesis. Defects in cilia biogenesis or function lead to pleiotropic phenotypes. Mutations in centrosome-cilia gene CC2D2A result in Meckel and Joubert syndromes. Here we generate a Cc2d2a(-/-) mouse that recapitulates features of Meckel syndrome including embryonic lethality and multiorgan defects. Cilia are absent in Cc2d2a(-/-) embryonic node and other somatic tissues; disruption of cilia-dependent Shh signalling appears to underlie exencephaly in mutant embryos. The Cc2d2a(-/-) mouse embryonic fibroblasts (MEFs) lack cilia, although mother centrioles and pericentriolar proteins are detected. Odf2, associated with subdistal appendages, is absent and ninein is reduced in mutant MEFs. In Cc2d2a(-/-) MEFs, subdistal appendages are lacking or abnormal by transmission electron microscopy. Consistent with this, CC2D2A localizes to subdistal appendages by immuno-EM in wild-type cells. We conclude that CC2D2A is essential for the assembly of subdistal appendages, which anchor cytoplasmic microtubules and prime the mother centriole for axoneme biogenesis.


Genome-wide Profiling Identifies DNA Methylation Signatures of Aging in Rod Photoreceptors Associated with Alterations in Energy Metabolism.

  • Ximena Corso-Díaz‎ et al.
  • Cell reports‎
  • 2020‎

Aging-associated functional decline is accompanied by alterations in the epigenome. To explore DNA modifications that could influence visual function with age, we perform whole-genome bisulfite sequencing of purified mouse rod photoreceptors at four ages and identify 2,054 differentially methylated regions (DMRs). We detect many DMRs during early stages of aging and in rod regulatory regions, and some of these cluster at chromosomal hotspots, especially on chromosome 10, which includes a longevity interactome. Integration of methylome to age-related transcriptome changes, chromatin signatures, and first-order protein-protein interactions uncover an enrichment of DMRs in altered pathways that are associated with rod function, aging, and energy metabolism. In concordance, we detect reduced basal mitochondrial respiration and increased fatty acid dependency with retinal age in ex vivo assays. Our study reveals age-dependent genomic and chromatin features susceptible to DNA methylation changes in rod photoreceptors and identifies a link between DNA methylation and energy metabolism in aging.


Retinal disease in ciliopathies: Recent advances with a focus on stem cell-based therapies.

  • Holly Yu Chen‎ et al.
  • Translational science of rare diseases‎
  • 2019‎

Ciliopathies display extensive genetic and clinical heterogeneity, varying in severity, age of onset, disease progression and organ systems affected. Retinal involvement, as demonstrated by photoreceptor dysfunction or death, is a highly penetrant phenotype among a vast majority of ciliopathies. Photoreceptor cells possess a specialized and modified sensory cilium with membrane discs where efficient photon capture and ensuing signaling cascade initiate the visual process. Disruptions of cilia biogenesis and protein transport lead to impairment of photoreceptor function and eventually degeneration. Despite advances in elucidation of ciliogenesis and photoreceptor cilia defects, we have limited understanding of pathogenic mechanisms underlying retinal phenotype(s) observed in human ciliopathies. Patient-derived induced pluripotent stem cell (iPSC)-based approaches offer a unique opportunity to complement studies with model organisms and examine cilia disease relevant to humans. Three-dimensional retinal organoids from iPSC lines feature laminated cytoarchitecture, apical-basal polarity and emergence of a ciliary structure, thereby permitting pathogenic modeling of human photoreceptors in vitro. Here, we review the biology of photoreceptor cilia and associated defects and discuss recent progress in evolving treatment modalities, especially using patient-derived iPSCs, for retinal ciliopathies.


High-resolution genome topology of human retina uncovers super enhancer-promoter interactions at tissue-specific and multifactorial disease loci.

  • Claire Marchal‎ et al.
  • Nature communications‎
  • 2022‎

Chromatin organization and enhancer-promoter contacts establish unique spatiotemporal gene expression patterns in distinct cell types. Non-coding genetic variants can influence cellular phenotypes by modifying higher-order transcriptional hubs and consequently gene expression. To elucidate genomic regulation in human retina, we mapped chromatin contacts at high resolution and integrated with super-enhancers (SEs), histone marks, binding of CTCF and select transcription factors. We show that topologically associated domains (TADs) with central SEs exhibit stronger insulation and augmented contact with retinal genes relative to TADs with edge SEs. Merging genome-wide expression quantitative trait loci (eQTLs) with topology map reveals physical links between 100 eQTLs and corresponding eGenes associated with retinal neurodegeneration. Additionally, we uncover candidate genes for susceptibility variants linked to age-related macular degeneration and glaucoma. Our study of high-resolution genomic architecture of human retina provides insights into genetic control of tissue-specific functions, suggests paradigms for missing heritability, and enables the dissection of common blinding disease phenotypes.


REEP6 mediates trafficking of a subset of Clathrin-coated vesicles and is critical for rod photoreceptor function and survival.

  • Shobi Veleri‎ et al.
  • Human molecular genetics‎
  • 2017‎

In retinal photoreceptors, vectorial transport of cargo is critical for transduction of visual signals, and defects in intracellular trafficking can lead to photoreceptor degeneration and vision impairment. Molecular signatures associated with routing of transport vesicles in photoreceptors are poorly understood. We previously reported the identification of a novel rod photoreceptor specific isoform of Receptor Expression Enhancing Protein (REEP) 6, which belongs to a family of proteins involved in intracellular transport of receptors to the plasma membrane. Here we show that loss of REEP6 in mice (Reep6-/-) results in progressive retinal degeneration. Rod photoreceptor dysfunction is observed in Reep6-/- mice as early as one month of age and associated with aberrant accumulation of vacuole-like structures at the apical inner segment and reduction in selected rod phototransduction proteins. We demonstrate that REEP6 is detected in a subset of Clathrin-coated vesicles and interacts with the t-SNARE, Syntaxin3. In concordance with the rod degeneration phenotype in Reep6-/- mice, whole exome sequencing identified homozygous REEP6-E75K mutation in two retinitis pigmentosa families of different ethnicities. Our studies suggest a critical function of REEP6 in trafficking of cargo via a subset of Clathrin-coated vesicles to selected membrane sites in retinal rod photoreceptors.


HIPRO: A High-Efficiency, Hypoxia-Induced Protocol for Generation of Photoreceptors in Retinal Organoids from Mouse Pluripotent Stem Cells.

  • Holly Y Chen‎ et al.
  • STAR protocols‎
  • 2020‎

Mouse pluripotent stem cells can be efficiently differentiated into retinal organoids with polarized, laminated neural retina harboring all retinal cell types by the Hypoxia-Induced Generation of Photoreceptor in Retinal Organoids (HIPRO) protocol. In our recent publication, we modified the HIPRO protocol on the basis of comparative transcriptome analyses to facilitate photoreceptor biogenesis and maturation. Here, we provide a detailed protocol for efficient generation of retinal organoids from mouse pluripotent stem cells. For complete details on the use and execution of this protocol, please refer to (Chen et al., 2016, DiStefano et al., 2018, Brooks et al., 2019).


Centrosomal protein CP110 controls maturation of the mother centriole during cilia biogenesis.

  • Sharda Prasad Yadav‎ et al.
  • Development (Cambridge, England)‎
  • 2016‎

Defects in cilia centrosomal genes cause pleiotropic clinical phenotypes, collectively called ciliopathies. Cilia biogenesis is initiated by the interaction of positive and negative regulators. Centriolar coiled coil protein 110 (CP110) caps the distal end of the mother centriole and is known to act as a suppressor to control the timing of ciliogenesis. Here, we demonstrate that CP110 promotes cilia formation in vivo, in contrast to findings in cultured cells. Cp110(-/-) mice die shortly after birth owing to organogenesis defects as in ciliopathies. Shh signaling is impaired in null embryos and primary cilia are reduced in multiple tissues. We show that CP110 is required for anchoring of basal bodies to the membrane during cilia formation. CP110 loss resulted in an abnormal distribution of core components of subdistal appendages (SDAs) and of recycling endosomes, which may be associated with premature extension of axonemal microtubules. Our data implicate CP110 in SDA assembly and ciliary vesicle docking, two requisite early steps in cilia formation. We suggest that CP110 has unique context-dependent functions, acting as both a suppressor and a promoter of ciliogenesis.


Improved Retinal Organoid Differentiation by Modulating Signaling Pathways Revealed by Comparative Transcriptome Analyses with Development In Vivo.

  • Matthew J Brooks‎ et al.
  • Stem cell reports‎
  • 2019‎

Stem cell-derived retinal organoids recapitulate many landmarks of in vivo differentiation but lack functional maturation of distinct cell types, especially photoreceptors. Using comprehensive temporal transcriptome analyses, we show that transcriptome shift from postnatal day 6 (P6) to P10, associated with morphogenesis and synapse formation during mouse retina development, was not evident in organoids, and co-expression clusters with similar patterns included different sets of genes. Furthermore, network analysis identified divergent regulatory dynamics between developing retina in vivo and in organoids, with temporal dysregulation of specific signaling pathways and delayed or reduced expression of genes involved in photoreceptor function(s) and survival. Accordingly, addition of docosahexaenoic acid and fibroblast growth factor 1 to organoid cultures specifically promoted the maturation of photoreceptors, including cones. Our study thus identifies regulatory signals deficient in developing retinal organoids and provides experimental validation by producing a more mature retina in vitro, thereby facilitating investigations in disease modeling and therapies.


Pias3 is necessary for dorso-ventral patterning and visual response of retinal cones but is not required for rod photoreceptor differentiation.

  • Christie K Campla‎ et al.
  • Biology open‎
  • 2017‎

Protein inhibitor of activated Stat 3 (Pias3) is implicated in guiding specification of rod and cone photoreceptors through post-translational modification of key retinal transcription factors. To investigate its role during retinal development, we deleted exon 2-5 of the mouse Pias3 gene, which resulted in complete loss of the Pias3 protein. Pias3-/- mice did not show any overt phenotype, and retinal lamination appeared normal even at 18 months. We detected reduced photopic b-wave amplitude by electroretinography following green light stimulation of postnatal day (P)21 Pias3-/- retina, suggesting a compromised visual response of medium wavelength (M) cones. No change was evident in response of short wavelength (S) cones or rod photoreceptors until 7 months. Increased S-opsin expression in the M-cone dominant dorsal retina suggested altered distribution of cone photoreceptors. Transcriptome profiling of P21 and 18-month-old Pias3-/- retina revealed aberrant expression of a subset of photoreceptor genes. Our studies demonstrate functional redundancy in SUMOylation-associated transcriptional control mechanisms and identify a specific, though limited, role of Pias3 in modulating spatial patterning and optimal function of cone photoreceptor subtypes in the mouse retina.


Stage-specific dynamic reorganization of genome topology shapes transcriptional neighborhoods in developing human retinal organoids.

  • Zepeng Qu‎ et al.
  • Cell reports‎
  • 2023‎

We have generated a high-resolution Hi-C map of developing human retinal organoids to elucidate spatiotemporal dynamics of genomic architecture and its relationship with gene expression patterns. We demonstrate progressive stage-specific alterations in DNA topology and correlate these changes with transcription of cell-type-restricted gene markers during retinal differentiation. Temporal Hi-C reveals a shift toward A compartment for protein-coding genes and B compartment for non-coding RNAs, displaying high and low expression, respectively. Notably, retina-enriched genes are clustered near lost boundaries of topologically associated domains (TADs), and higher-order assemblages (i.e., TAD cliques) localize in active chromatin regions with binding sites for eye-field transcription factors. These genes gain chromatin contacts at their transcription start site as organoid differentiation proceeds. Our study provides a global view of chromatin architecture dynamics associated with diversification of cell types during retinal development and serves as a foundational resource for in-depth functional investigations of retinal developmental traits.


Three-dimensional retinal organoids from mouse pluripotent stem cells mimic in vivo development with enhanced stratification and rod photoreceptor differentiation.

  • Holly Yu Chen‎ et al.
  • Molecular vision‎
  • 2016‎

The generation of three-dimensional (3D) organoids with optic cup-like structures from pluripotent stem cells has created opportunities for investigating mammalian retinal development in vitro. However, retinal organoids in culture do not completely reflect the developmental state and in vivo architecture of the rod-dominant mouse retina. The goals of this study were to develop an efficient protocol for generating retinal organoids from stem cells and examine the morphogenesis of rods in vitro.


Rapid RGR-dependent visual pigment recycling is mediated by the RPE and specialized Müller glia.

  • Aleksander Tworak‎ et al.
  • Cell reports‎
  • 2023‎

In daylight, demand for visual chromophore (11-cis-retinal) exceeds supply by the classical visual cycle. This shortfall is compensated, in part, by the retinal G-protein-coupled receptor (RGR) photoisomerase, which is expressed in both the retinal pigment epithelium (RPE) and in Müller cells. The relative contributions of these two cellular pools of RGR to the maintenance of photoreceptor light responses are not known. Here, we use a cell-specific gene reactivation approach to elucidate the kinetics of RGR-mediated recovery of photoreceptor responses following light exposure. Electroretinographic measurements in mice with RGR expression limited to either cell type reveal that the RPE and a specialized subset of Müller glia contribute both to scotopic and photopic function. We demonstrate that 11-cis-retinal formed through photoisomerization is rapidly hydrolyzed, consistent with its role in a rapid visual pigment regeneration process. Our study shows that RGR provides a pan-retinal sink for all-trans-retinal released under sustained light conditions and supports rapid chromophore regeneration through the photic visual cycle.


Primary cilia biogenesis and associated retinal ciliopathies.

  • Holly Y Chen‎ et al.
  • Seminars in cell & developmental biology‎
  • 2021‎

The primary cilium is a ubiquitous microtubule-based organelle that senses external environment and modulates diverse signaling pathways in different cell types and tissues. The cilium originates from the mother centriole through a complex set of cellular events requiring hundreds of distinct components. Aberrant ciliogenesis or ciliary transport leads to a broad spectrum of clinical entities with overlapping yet highly variable phenotypes, collectively called ciliopathies, which include sensory defects and syndromic disorders with multi-organ pathologies. For efficient light detection, photoreceptors in the retina elaborate a modified cilium known as the outer segment, which is packed with membranous discs enriched for components of the phototransduction machinery. Retinopathy phenotype involves dysfunction and/or degeneration of the light sensing photoreceptors and is highly penetrant in ciliopathies. This review will discuss primary cilia biogenesis and ciliopathies, with a focus on the retina, and the role of CP110-CEP290-CC2D2A network. We will also explore how recent technologies can advance our understanding of cilia biology and discuss new paradigms for developing potential therapies of retinal ciliopathies.


Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a.

  • Chunqiao Liu‎ et al.
  • Biology open‎
  • 2014‎

Planar cell polarity (PCP) signaling plays a critical role in tissue morphogenesis. In mammals, disruption of three of the six "core PCP" components results in polarity-dependent defects with rotated cochlear hair cell stereocilia and open neural tube. We recently demonstrated a role of Prickle1, a core PCP molecule in Drosophila, in mammalian neuronal development. To examine Prickle1 function along a broader developmental window, we generated three mutant alleles in mice. We show that the complete loss of Prickle1 leads to systemic tissue outgrowth defects, aberrant cell organization and disruption of polarity machinery. Curiously, Prickle1 mutants recapitulate the characteristic features of human Robinow syndrome and phenocopy mouse mutants with Wnt5a or Ror2 gene defects, prompting us to explore an association of Prickle1 with the Wnt pathway. We show that Prickle1 is a proteasomal target of Wnt5a signaling and that Dvl2, a target of Wnt5a signaling, is misregulated in Prickle1 mutants. Our studies implicate Prickle1 as a key component of the Wnt-signaling pathway and suggest that Prickle1 mediates some of the WNT5A-associated genetic defects in Robinow syndrome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: