Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Analysis of the native structure, stability and aggregation of biotinylated human lysozyme.

  • Minkoo Ahn‎ et al.
  • PloS one‎
  • 2012‎

Fibril formation by mutational variants of human lysozyme is associated with a fatal form of hereditary non-neuropathic systemic amyloidosis. Defining the mechanistic details of lysozyme aggregation is of crucial importance for understanding the origin and progression of this disease and related misfolding conditions. In this study, we show that a biotin moiety can be introduced site-specifically at Lys33 of human lysozyme. We demonstrate, using biophysical techniques, that the structure and stability of the native-state of the protein are not detectably altered by this modification, and that the ability to form amyloid fibrils is unchanged. By taking advantage of biotin-avidin interactions, we show that super-resolution fluorescence microscopy can generate detailed images of the mature fibrils. This methodology can readily enable the introduction of additional probes into the protein, thereby providing the means through which to understand, in detail, the nature of the aggregation process of lysozyme and its variants under a variety of conditions.


Application of Lysine-specific Labeling to Detect Transient Interactions Present During Human Lysozyme Amyloid Fibril Formation.

  • Minkoo Ahn‎ et al.
  • Scientific reports‎
  • 2017‎

Populating transient and partially unfolded species is a crucial step in the formation and accumulation of amyloid fibrils formed from pathogenic variants of human lysozyme linked with a rare but fatal hereditary systemic amyloidosis. The partially unfolded species possess an unstructured β-domain and C-helix with the rest of the α-domain remaining native-like. Here we use paramagnetic relaxation enhancement (PRE) measured by NMR spectroscopy to study the transient intermolecular interactions between such intermediate species. Nitroxide spin labels, introduced specifically at three individual lysine residues, generate distinct PRE profiles, indicating the presence of intermolecular interactions between residues within the unfolded β-domain. This study describes the applicability to PRE NMR measurements of selective lysine labeling, at different sites within a protein, as an alternative to the introduction of spin labels via engineered cysteine residues. These results reveal the importance of the β-sheet region of lysozyme for initiating self-assembly into amyloid fibrils.


C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction.

  • Janin Lautenschläger‎ et al.
  • Nature communications‎
  • 2018‎

Alpha-synuclein is known to bind to small unilamellar vesicles (SUVs) via its N terminus, which forms an amphipathic alpha-helix upon membrane interaction. Here we show that calcium binds to the C terminus of alpha-synuclein, therewith increasing its lipid-binding capacity. Using CEST-NMR, we reveal that alpha-synuclein interacts with isolated synaptic vesicles with two regions, the N terminus, already known from studies on SUVs, and additionally via its C terminus, which is regulated by the binding of calcium. Indeed, dSTORM on synaptosomes shows that calcium mediates the localization of alpha-synuclein at the pre-synaptic terminal, and an imbalance in calcium or alpha-synuclein can cause synaptic vesicle clustering, as seen ex vivo and in vitro. This study provides a new view on the binding of alpha-synuclein to synaptic vesicles, which might also affect our understanding of synucleinopathies.


Correlative STED and Atomic Force Microscopy on Live Astrocytes Reveals Plasticity of Cytoskeletal Structure and Membrane Physical Properties during Polarized Migration.

  • Nathan Curry‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2017‎

The plasticity of the cytoskeleton architecture and membrane properties is important for the establishment of cell polarity, adhesion and migration. Here, we present a method which combines stimulated emission depletion (STED) super-resolution imaging and atomic force microscopy (AFM) to correlate cytoskeletal structural information with membrane physical properties in live astrocytes. Using STED compatible dyes for live cell imaging of the cytoskeleton, and simultaneously mapping the cell surface topology with AFM, we obtain unprecedented detail of highly organized networks of actin and microtubules in astrocytes. Combining mechanical data from AFM with optical imaging of actin and tubulin further reveals links between cytoskeleton organization and membrane properties. Using this methodology we illustrate that scratch-induced migration induces cytoskeleton remodeling. The latter is caused by a polarization of actin and microtubule elements within astroglial cell processes, which correlates strongly with changes in cell stiffness. The method opens new avenues for the dynamic probing of the membrane structural and functional plasticity of living brain cells. It is a powerful tool for providing new insights into mechanisms of cell structural remodeling during physiological or pathological processes, such as brain development or tumorigenesis.


Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans.

  • Chaolie Huang‎ et al.
  • eLife‎
  • 2019‎

Reduced protein homeostasis leading to increased protein instability is a common molecular feature of aging, but it remains unclear whether this is a cause or consequence of the aging process. In neurodegenerative diseases and other amyloidoses, specific proteins self-assemble into amyloid fibrils and accumulate as pathological aggregates in different tissues. More recently, widespread protein aggregation has been described during normal aging. Until now, an extensive characterization of the nature of age-dependent protein aggregation has been lacking. Here, we show that age-dependent aggregates are rapidly formed by newly synthesized proteins and have an amyloid-like structure resembling that of protein aggregates observed in disease. We then demonstrate that age-dependent protein aggregation accelerates the functional decline of different tissues in C. elegans. Together, these findings imply that amyloid-like aggregates contribute to the aging process and therefore could be important targets for strategies designed to maintain physiological functions in the late stages of life.


Intramitochondrial proteostasis is directly coupled to α-synuclein and amyloid β1-42 pathologies.

  • Janin Lautenschläger‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

Mitochondrial dysfunction has long been implicated in the neurodegenerative disorder Parkinson's disease (PD); however, it is unclear how mitochondrial impairment and α-synuclein pathology are coupled. Using specific mitochondrial inhibitors, EM analysis, and biochemical assays, we report here that intramitochondrial protein homeostasis plays a major role in α-synuclein aggregation. We found that interference with intramitochondrial proteases, such as HtrA2 and Lon protease, and mitochondrial protein import significantly aggravates α-synuclein seeding. In contrast, direct inhibition of mitochondrial complex I, an increase in intracellular calcium concentration, or formation of reactive oxygen species, all of which have been associated with mitochondrial stress, did not affect α-synuclein pathology. We further demonstrate that similar mechanisms are involved in amyloid-β 1-42 (Aβ42) aggregation. Our results suggest that, in addition to other protein quality control pathways, such as the ubiquitin-proteasome system, mitochondria per se can influence protein homeostasis of cytosolic aggregation-prone proteins. We propose that approaches that seek to maintain mitochondrial fitness, rather than target downstream mitochondrial dysfunction, may aid in the search for therapeutic strategies to manage PD and related neuropathologies.


Structure of a single-chain Fv bound to the 17 N-terminal residues of huntingtin provides insights into pathogenic amyloid formation and suppression.

  • Erwin De Genst‎ et al.
  • Journal of molecular biology‎
  • 2015‎

Huntington's disease is triggered by misfolding of fragments of mutant forms of the huntingtin protein (mHTT) with aberrant polyglutamine expansions. The C4 single-chain Fv antibody (scFv) binds to the first 17 residues of huntingtin [HTT(1-17)] and generates substantial protection against multiple phenotypic pathologies in situ and in vivo. We show in this paper that C4 scFv inhibits amyloid formation by exon1 fragments of huntingtin in vitro and elucidate the structural basis for this inhibition and protection by determining the crystal structure of the complex of C4 scFv and HTT(1-17). The peptide binds with residues 3-11 forming an amphipathic helix that makes contact with the antibody fragment in such a way that the hydrophobic face of this helix is shielded from the solvent. Residues 12-17 of the peptide are in an extended conformation and interact with the same region of another C4 scFv:HTT(1-17) complex in the asymmetric unit, resulting in a β-sheet interface within a dimeric C4 scFv:HTT(1-17) complex. The nature of this scFv-peptide complex was further explored in solution by high-resolution NMR and physicochemical analysis of species in solution. The results provide insights into the manner in which C4 scFv inhibits the aggregation of HTT, and hence into its therapeutic potential, and suggests a structural basis for the initial interactions that underlie the formation of disease-associated amyloid fibrils by HTT.


Extracellular monomeric tau protein is sufficient to initiate the spread of tau protein pathology.

  • Claire H Michel‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

Understanding the formation and propagation of aggregates of the Alzheimer disease-associated Tau protein in vivo is vital for the development of therapeutics for this devastating disorder. Using our recently developed live-cell aggregation sensor in neuron-like cells, we demonstrate that different variants of exogenous monomeric Tau, namely full-length Tau (hTau40) and the Tau-derived construct K18 comprising the repeat domain, initially accumulate in endosomal compartments, where they form fibrillar seeds that subsequently induce the aggregation of endogenous Tau. Using superresolution imaging, we confirm that fibrils consisting of endogenous and exogenous Tau are released from cells and demonstrate their potential to spread Tau pathology. Our data indicate a greater pathological risk and potential toxicity than hitherto suspected for extracellular soluble Tau.


Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox.

  • Edward Avezov‎ et al.
  • The Journal of cell biology‎
  • 2013‎

Interfering with disulfide bond formation impedes protein folding and promotes endoplasmic reticulum (ER) stress. Due to limitations in measurement techniques, the relationships of altered thiol redox and ER stress have been difficult to assess. We report that fluorescent lifetime measurements circumvented the crippling dimness of an ER-tuned fluorescent redox-responsive probe (roGFPiE), faithfully tracking the activity of the major ER-localized protein disulfide isomerase, PDI. In vivo lifetime imaging by time-correlated single-photon counting (TCSPC) recorded subtle changes in ER redox poise induced by exposure of mammalian cells to a reducing environment but revealed an unanticipated stability of redox to fluctuations in unfolded protein load. By contrast, TCSPC of roGFPiE uncovered a hitherto unsuspected reductive shift in the mammalian ER upon loss of luminal calcium, whether induced by pharmacological inhibition of calcium reuptake into the ER or by physiological activation of release channels. These findings recommend fluorescent lifetime imaging as a sensitive method to track ER redox homeostasis in mammalian cells.


Cultivation and Imaging of S. latissima Embryo Monolayered Cell Sheets Inside Microfluidic Devices.

  • Thomas Clerc‎ et al.
  • Bioengineering (Basel, Switzerland)‎
  • 2022‎

The culturing and investigation of individual marine specimens in lab environments is crucial to further our understanding of this highly complex ecosystem. However, the obtained results and their relevance are often limited by a lack of suitable experimental setups enabling controlled specimen growth in a natural environment while allowing for precise monitoring and in-depth observations. In this work, we explore the viability of a microfluidic device for the investigation of the growth of the alga Saccharina latissima to enable high-resolution imaging by confining the samples, which usually grow in 3D, to a single 2D plane. We evaluate the specimen's health based on various factors such as its growth rate, cell shape, and major developmental steps with regard to the device's operating parameters and flow conditions before demonstrating its compatibility with state-of-the-art microscopy imaging technologies such as the skeletonisation of the specimen through calcofluor white-based vital staining of its cell contours as well as the immunolocalisation of the specimen's cell wall. Furthermore, by making use of the on-chip characterisation capabilities, we investigate the influence of altered environmental illuminations on the embryonic development using blue and red light. Finally, live tracking of fluorescent microspheres deposited on the surface of the embryo permits the quantitative characterisation of growth at various locations of the organism.


An mRNA assay system demonstrates proteasomal-specific degradation contributes to cardiomyopathic phospholamban null mutation.

  • Eduarde Rohner‎ et al.
  • Molecular medicine (Cambridge, Mass.)‎
  • 2021‎

The human L39X phospholamban (PLN) cardiomyopathic mutant has previously been reported as a null mutation but the detailed molecular pathways that lead to the complete lack of detectable protein remain to be clarified. Previous studies have shown the implication between an impaired cellular degradation homeostasis and cardiomyopathy development. Therefore, uncovering the underlying mechanism responsible for the lack of PLN protein has important implications in understanding the patient pathology, chronic human calcium dysregulation and aid the development of potential therapeutics.


Proteasome-targeted nanobodies alleviate pathology and functional decline in an α-synuclein-based Parkinson's disease model.

  • Diptaman Chatterjee‎ et al.
  • NPJ Parkinson's disease‎
  • 2018‎

Therapeutics designed to target α-synuclein (α-syn) aggregation may be critical in halting the progression of pathology in Parkinson's disease (PD) patients. Nanobodies are single-domain antibody fragments that bind with antibody specificity, but allow readier genetic engineering and delivery. When expressed intracellularly as intrabodies, anti-α-syn nanobodies fused to a proteasome-targeting proline, aspartate or glutamate, serine, and threonine (PEST) motif can modulate monomeric concentrations of target proteins. Here we aimed to validate and compare the in vivo therapeutic potential of gene therapy delivery of two proteasome-directed nanobodies selectively targeting α-syn in a synuclein overexpression-based PD model: VH14*PEST (non-amyloid component region) and NbSyn87*PEST (C-terminal region). Stereotaxic injections of adeno-associated viral 5-α-syn (AAV5-α-syn) into the substantia nigra (SN) were performed in Sprague-Dawley rats that were sorted into three cohorts based on pre-operative behavioral testing. Rats were treated with unilateral SN injections of vectors for VH14*PEST, NbSyn87*PEST, or injected with saline 3 weeks post lesion. Post-mortem assessments of the SN showed that both nanobodies markedly reduced the level of phosphorylated Serine-129 α-syn labeling relative to saline-treated animals. VH14*PEST showed considerable maintenance of striatal dopaminergic tone in comparison to saline-treated and NbSyn87*PEST-treated animals as measured by tyrosine hydroxylase immunoreactivity (optical density), DAT immunoreactivity (optical density), and dopamine concentration (high-performance liquid chromatography). Microglial accumulation and inflammatory response, assessed by stereological counts of Iba-1-labeled cells, was modestly increased in NbSyn87*PEST-injected rats but not in VH14*PEST-treated or saline-treated animals. Modest behavioral rescue was also observed, although there was pronounced variability among individual animals. These data validate in vivo therapeutic efficacy of vector-delivered intracellular nanobodies targeting α-syn misfolding and aggregation in synucleinopathies such as PD.


A safety mechanism enables tissue-specific resistance to protein aggregation during aging in C. elegans.

  • Raimund Jung‎ et al.
  • PLoS biology‎
  • 2023‎

During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.


ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function.

  • Tetsuro Murakami‎ et al.
  • Neuron‎
  • 2015‎

The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins.


The Significance of the Location of Mutations for the Native-State Dynamics of Human Lysozyme.

  • Minkoo Ahn‎ et al.
  • Biophysical journal‎
  • 2016‎

The conversion of human lysozyme into amyloid fibrils is associated with a rare but fatal hereditary form of nonneuropathic systemic amyloidosis. The accumulation of large amounts of aggregated protein is thought to be initiated by the formation of transient intermediate species of disease-related lysozyme variants, essentially due to the loss of global cooperativity under physiologically relevant conditions. Interestingly, all five naturally occurring, amyloidogenic, single-point mutations are located in the β-domain of lysozyme, the region that is predominantly unfolded during the formation of the transient intermediate species. Given the lack of known naturally occurring, amyloidogenic, single-point mutations in the α-domain, we chose three specific mutations to address the effects that location may have on native-state dynamics, as studied by hydrogen-deuterium (HD) exchange experiments analyzed by NMR spectroscopy, and mass spectrometry. We compared the effect of a destabilizing α-domain mutation (I23A) with that of the well-characterized I59T β-domain variant. We also investigated the effect of a mutation that has minor effects on native-state stability at the domain interface (I56V) and compared it with that of a variant with similar stability within the C-helix (I89V). We show that when variants have similar reduced native-state stabilities, the location of the mutation (I23A versus I59T) is crucial to the native-state dynamics, with the α-domain mutation having a significantly lower ability to populate transient intermediate species under physiologically relevant conditions. Interestingly, the mutation at the interface (I56V) has a greater effect in facilitating the formation of transient intermediate species at elevated temperatures compared with the variants containing α-domain mutations, even though this mutation results in only minor changes to the native-state stability of lysozyme. These findings reveal that the location of specific mutations is an important factor in determining the native-state dynamical properties of human lysozyme in the context of its propensity to populate the aggregation-prone transient intermediate species associated with pathogenic amyloid formation.


Sea Cucumber-Derived Peptides Alleviate Oxidative Stress in Neuroblastoma Cells and Improve Survival in C. elegans Exposed to Neurotoxic Paraquat.

  • Meng Lu‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2021‎

Oxidative stress results when the production of oxidants outweighs the capacity of the antioxidant defence mechanisms. This can lead to pathological conditions including cancer and neurodegeneration. Consequently, there is considerable interest in compounds with antioxidant activity, including those from natural sources. Here, we characterise the antioxidant activity of three novel peptides identified in protein hydrolysates from the sea cucumber Apostichopus japonicus. Under oxidative stress conditions, synthetic versions of the sea cucumber peptides significantly compensate for glutathione depletion, decrease mitochondrial superoxide levels, and alleviate mitophagy in human neuroblastoma cells. Moreover, orally supplied peptides improve survival of the Caenorhabditis elegans after treatment with paraquat, the latter of which leads to the production of excessive oxidative stress. Thus, the sea cucumber peptides exhibit antioxidant activity at both the cellular and organism levels and might prove attractive as nutritional supplements for healthy ageing.


Spontaneous assembly of redox-active iron-sulfur clusters at low concentrations of cysteine.

  • Sean F Jordan‎ et al.
  • Nature communications‎
  • 2021‎

Iron-sulfur (FeS) proteins are ancient and fundamental to life, being involved in electron transfer and CO2 fixation. FeS clusters have structures similar to the unit-cell of FeS minerals such as greigite, found in hydrothermal systems linked with the origin of life. However, the prebiotic pathway from mineral surfaces to biological clusters is unknown. Here we show that FeS clusters form spontaneously through interactions of inorganic Fe2+/Fe3+ and S2- with micromolar concentrations of the amino acid cysteine in water at alkaline pH. Bicarbonate ions stabilize the clusters and even promote cluster formation alone at concentrations >10 mM, probably through salting-out effects. We demonstrate robust, concentration-dependent formation of [4Fe4S], [2Fe2S] and mononuclear iron clusters using UV-Vis spectroscopy, 57Fe-Mössbauer spectroscopy and 1H-NMR. Cyclic voltammetry shows that the clusters are redox-active. Our findings reveal that the structures responsible for biological electron transfer and CO2 reduction could have formed spontaneously from monomers at the origin of life.


Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ.

  • David C Butler‎ et al.
  • PloS one‎
  • 2016‎

Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn) are closely associated with synucleinopathies, including Parkinson's disease (PD). VH14 is a human single domain intrabody selected against the non-amyloid component (NAC) hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies.


Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity.

  • Christian Gallrein‎ et al.
  • Progress in neurobiology‎
  • 2021‎

Protein misfolding and aggregation are hallmarks of neurodegenerative diseases such as Alzheimer's disease (AD). In AD, the accumulation and aggregation of tau and the amyloid-beta peptide Aβ1-42 precedes the onset of AD symptoms. Modelling the aggregation of Aβ is technically very challenging in vivo due to its size of only 42 aa. Here, we employed sub-stoichiometric labelling of Aβ1-42 in C. elegans to enable tracking of the peptide in vivo, combined with the "native" aggregation of unlabeled Aβ1-42. Expression of Aβ1-42 leads to severe physiological defects, neuronal dysfunction and neurodegeneration. Moreover, we can demonstrate spreading of neuronal Aβ to other tissues. Fluorescence lifetime imaging microscopy enabled a quantification of the formation of amyloid fibrils with ageing and revealed a heterogenic yet specific pattern of aggregation. Notably, we found that Aβ aggregation starts in a subset of neurons of the anterior head ganglion, the six IL2 neurons. We further demonstrate that cell-specific, RNAi-mediated depletion of Aβ in these IL2 neurons systemically delays Aβ aggregation and pathology.


FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions.

  • Seema Qamar‎ et al.
  • Cell‎
  • 2018‎

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: