Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 407 papers

Lrp5/6 are required for cerebellar development and for suppressing TH expression in Purkinje cells via β-catenin.

  • Ying Huang‎ et al.
  • Molecular brain‎
  • 2016‎

The cerebellum is responsible for coordinating motor functions and has a unique laminated architecture. Purkinje cells are inhibitory neurons and represent the only output from the cerebellar cortex. Tyrosine hydroxylase (TH) is the key enzyme for the synthesis of catecholamines, including dopamine and noradrenaline, and it is normally not expressed in cerebellar neurons.


Dasatinib induces DNA damage and activates DNA repair pathways leading to senescence in non-small cell lung cancer cell lines with kinase-inactivating BRAF mutations.

  • Shaohua Peng‎ et al.
  • Oncotarget‎
  • 2016‎

Improved therapies are greatly needed for non-small cell lung cancer (NSCLC) that does not harbor targetable kinase mutations or translocations. We previously demonstrated that NSCLC cells that harbor kinase-inactivating BRAF mutations (KIBRAF) undergo senescence when treated with the multitargeted kinase inhibitor dasatinib. Similarly, treatment with dasatinib resulted in a profound and durable response in a patient with KIBRAF NSCLC. However, no canonical pathways explain dasatinib-induced senescence in KIBRAF NSCLC. To investigate the underlying mechanism, we used 2 approaches: gene expression and reverse phase protein arrays. Both approaches showed that DNA repair pathways were differentially modulated between KIBRAF NSCLC cells and those with wild-type (WT) BRAF. Consistent with these findings, dasatinib induced DNA damage and activated DNA repair pathways leading to senescence only in the KIBRAF cells. Moreover, dasatinib-induced senescence was dependent on Chk1 and p21, proteins known to mediate DNA damage-induced senescence. Dasatinib also led to a marked decrease in TAZ but not YAP protein levels. Overexpression of TAZ inhibited dasatinib-induced senescence. To investigate other vulnerabilities in KIBRAF NSCLC cells, we compared the sensitivity of these cells with that of WTBRAF NSCLC cells to 79 drugs and identified a pattern of sensitivity to EGFR and MEK inhibitors in the KIBRAF cells. Clinically approved EGFR and MEK inhibitors, which are better tolerated than dasatinib, could be used to treat KIBRAF NSCLC. Our novel finding that dasatinib induced DNA damage and subsequently activated DNA repair pathways leading to senescence in KIBRAF NSCLC cells represents a unique vulnerability with potential clinical applications.


The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer.

  • Aifu Lin‎ et al.
  • Nature cell biology‎
  • 2016‎

Although long non-coding RNAs (lncRNAs) predominately reside in the nucleus and exert their functions in many biological processes, their potential involvement in cytoplasmic signal transduction remains unexplored. Here, we identify a cytoplasmic lncRNA, LINK-A (long intergenic non-coding RNA for kinase activation), which mediates HB-EGF-triggered, EGFR:GPNMB heterodimer-dependent HIF1α phosphorylation at Tyr 565 and Ser 797 by BRK and LRRK2, respectively. These events cause HIF1α stabilization, HIF1α-p300 interaction, and activation of HIF1α transcriptional programs under normoxic conditions. Mechanistically, LINK-A facilitates the recruitment of BRK to the EGFR:GPNMB complex and BRK kinase activation. The BRK-dependent HIF1α Tyr 565 phosphorylation interferes with Pro 564 hydroxylation, leading to normoxic HIF1α stabilization. Both LINK-A expression and LINK-A-dependent signalling pathway activation correlate with triple-negative breast cancer (TNBC), promoting breast cancer glycolysis reprogramming and tumorigenesis. Our findings illustrate the magnitude and diversity of cytoplasmic lncRNAs in signal transduction and highlight the important roles of lncRNAs in cancer.


Ultraconserved long non-coding RNA uc.63 in breast cancer.

  • Alberto Marini‎ et al.
  • Oncotarget‎
  • 2017‎

Transcribed-ultraconserved regions (T-UCRs) are long non-coding RNAs (lncRNA) encoded by a subset of long ultraconserved stretches in the human genome. Recent studies revealed that the expression of several T-UCRs is altered in cancer and growing evidences underline the importance of T-UCRs in oncogenesis, offering also potential new strategies for diagnosis and prognosis. We found that overexpression of one specific T-UCRs named uc.63 is associated with bad outcome in luminal A subtype of breast cancer patients. uc.63 is localized in the third intron of exportin-1 gene (XPO1) and is transcribed in the same orientation of its host gene. Interestingly, silencing of uc.63 induces apoptosis in vitro. However, silencing of host gene XPO1 does not cause the same effect suggesting that the transcription of uc.63 is independent of XPO1. Our results reveal an important role of uc.63 in promoting breast cancer cells survival and offer the prospect to identify a signature associated with poor prognosis.


High-density interspecific genetic maps of kiwifruit and the identification of sex-specific markers.

  • Qiong Zhang‎ et al.
  • DNA research : an international journal for rapid publication of reports on genes and genomes‎
  • 2015‎

Kiwifruit (Actinidia chinensis Planchon) is an important specialty fruit crop that suffers from narrow genetic diversity stemming from recent global commercialization and limited cultivar improvement. Here, we present high-density RAD-seq-based genetic maps using an interspecific F1 cross between Actinidia rufa 'MT570001' and A. chinensis 'Guihai No4'. The A. rufa (maternal) map consists of 2,426 single-nucleotide polymorphism (SNP) markers with a total length of 2,651 cM in 29 linkage groups (LGs) corresponding to the 29 chromosomes. The A. chinensis (paternal) map consists of 4,214 SNP markers over 3,142 cM in 29 LGs. Using these maps, we were able to anchor an additional 440 scaffolds from the kiwifruit draft genome assembly. Kiwifruit is functionally dioecious, which presents unique challenges for breeding and production. Three sex-specific simple sequence repeats (SSR) markers can be used to accurately sex type male and female kiwifruit in breeding programmes. The sex-determination region (SDR) in kiwifruit was narrowed to a 1-Mb subtelomeric region on chromosome 25. Localizing the SDR will expedite the discovery of genes controlling carpel abortion in males and pollen sterility in females.


MiRNA and TF co-regulatory network analysis for the pathology and recurrence of myocardial infarction.

  • Ying Lin‎ et al.
  • Scientific reports‎
  • 2015‎

Myocardial infarction (MI) is a leading cause of death in the world and many genes are involved in it. Transcription factor (TFs) and microRNAs (miRNAs) are key regulators of gene expression. We hypothesized that miRNAs and TFs might play combinatory regulatory roles in MI. After collecting MI candidate genes and miRNAs from various resources, we constructed a comprehensive MI-specific miRNA-TF co-regulatory network by integrating predicted and experimentally validated TF and miRNA targets. We found some hub nodes (e.g. miR-16 and miR-26) in this network are important regulators, and the network can be severed as a bridge to interpret the associations of previous results, which is shown by the case of miR-29 in this study. We also constructed a regulatory network for MI recurrence and found several important genes (e.g. DAB2, BMP6, miR-320 and miR-103), the abnormal expressions of which may be potential regulatory mechanisms and markers of MI recurrence. At last we proposed a cellular model to discuss major TF and miRNA regulators with signaling pathways in MI. This study provides more details on gene expression regulation and regulators involved in MI progression and recurrence. It also linked up and interpreted many previous results.


A census of nuclear cyanobacterial recruits in the plant kingdom.

  • Szabolcs Makai‎ et al.
  • PloS one‎
  • 2015‎

The plastids and mitochondria of the eukaryotic cell are of endosymbiotic origin. These events occurred ~2 billion years ago and produced significant changes in the genomes of the host and the endosymbiont. Previous studies demonstrated that the invasion of land affected plastids and mitochondria differently and that the paths of mitochondrial integration differed between animals and plants. Other studies examined the reasons why a set of proteins remained encoded in the organelles and were not transferred to the nuclear genome. However, our understanding of the functional relations of the transferred genes is insufficient. In this paper, we report a high-throughput phylogenetic analysis to identify genes of cyanobacterial origin for plants of different levels of complexity: Arabidopsis thaliana, Chlamydomonas reinhardtii, Physcomitrella patens, Populus trichocarpa, Selaginella moellendorffii, Sorghum bicolor, Oryza sativa, and Ostreococcus tauri. Thus, a census of cyanobacterial gene recruits and a study of their function are presented to better understand the functional aspects of plastid symbiogenesis. From algae to angiosperms, the GO terms demonstrated a gradual expansion over functionally related genes in the nuclear genome, beginning with genes related to thylakoids and photosynthesis, followed by genes involved in metabolism, and finally with regulation-related genes, primarily in angiosperms. The results demonstrate that DNA is supplied to the nuclear genome on a permanent basis with no regard to function, and only what is needed is kept, which thereby expands on the GO space along the related genes.


De novo assembly of the desert tree Haloxylon ammodendron (C. A. Mey.) based on RNA-Seq data provides insight into drought response, gene discovery and marker identification.

  • Yan Long‎ et al.
  • BMC genomics‎
  • 2014‎

Haloxylon ammodendron (C. A. Mey.) is widely distributed across a range of habitats, including gravel desert, clay desert, fixed and semi-fixed sand, and saline land in Asian and African deserts. To date, no genomic information or expressed sequence tag-simple sequence repeat (EST-SSR) marker has been reported for H. ammodendron plants.


lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse.

  • Jing Gong‎ et al.
  • Nucleic acids research‎
  • 2015‎

Long non-coding RNAs (lncRNAs) play key roles in various cellular contexts and diseases by diverse mechanisms. With the rapid growth of identified lncRNAs and disease-associated single nucleotide polymorphisms (SNPs), there is a great demand to study SNPs in lncRNAs. Aiming to provide a useful resource about lncRNA SNPs, we systematically identified SNPs in lncRNAs and analyzed their potential impacts on lncRNA structure and function. In total, we identified 495,729 and 777,095 SNPs in more than 30,000 lncRNA transcripts in human and mouse, respectively. A large number of SNPs were predicted with the potential to impact on the miRNA-lncRNA interaction. The experimental evidence and conservation of miRNA-lncRNA interaction, as well as miRNA expressions from TCGA were also integrated to prioritize the miRNA-lncRNA interactions and SNPs on the binding sites. Furthermore, by mapping SNPs to GWAS results, we found that 142 human lncRNA SNPs are GWAS tagSNPs and 197,827 lncRNA SNPs are in the GWAS linkage disequilibrium regions. All these data for human and mouse lncRNAs were imported into lncRNASNP database (http://bioinfo.life.hust.edu.cn/lncRNASNP/), which includes two sub-databases lncRNASNP-human and lncRNASNP-mouse. The lncRNASNP database has a user-friendly interface for searching and browsing through the SNP, lncRNA and miRNA sections.


The 14-3-3σ/GSK3β/β-catenin/ZEB1 regulatory loop modulates chemo-sensitivity in human tongue cancer.

  • Cong Peng‎ et al.
  • Oncotarget‎
  • 2015‎

Here we demonstrated that chemotherapy induced 14-3-3σ expression in tongue cancer (TC) cells and overexpressed 14-3-3σ sensitized TC cells to chemotherapy especially in multidrug resistant TC (MDR-TC) cells. In agreement, 14-3-3σ knockdown enhanced resistance of TC cells to chemotherapy. Mechanically, we found 14-3-3σ physically bound to GSK3β in protein level and the binding inhibited β-catenin signaling. Coincidentally, chemotherapy as well as 14-3-3σ overexpression led to increase of GSK3β protein level. Increased GSK3β protein sensitized TC cells to chemotherapy. Moreover, deregulation of 14-3-3σ/GSK3β/β-catenin axis led to overexpressed ZEB1 in TC cells, especially in MDR-TC cells. As a negative feedback loop, ZEB1 bond to 14-3-3σ promoter to enhance promoter hypermethylation in TC cells. Promoter hypermethylation resulted into the decrease of 14-3-3σ expression. Importantly, a positive correlation was observed between 14-3-3σ and GSK3β protein expression in TC tissues from patients receiving chemotherapy. High levels of 14-3-3σ and GSK3β were associated with better prognosis in TC patients.


Dual-color labeled anti-mucin 1 antibody for imaging of ovarian cancer: A preliminary animal study.

  • Qiong Zhang‎ et al.
  • Oncology letters‎
  • 2015‎

To investigate the feasibility of the anti-mucin 1 (anti-MUC1/CD227) antibody in the fluorescent imaging of ovarian cancer, the CD227 antibody and a control IgG antibody were labeled with a near-infrared dye [Cy5.5-N-hydroxysuccinimide (NHS)] and a green dye (fluorescein-NHS). In vivo fluorescence images were obtained at 4, 12 and 36 h after injection of the probes into OVCAR3 tumor-bearing mice. The tumor to background ratios were calculated for both probes. Ex vivo fluorescence images were obtained following sacrifice at 36 h. After conjugation to Cy5.5 and fluorescein, the dual-color labeled CD227 probe (Ab-FL-Cy5.5) could be visualized by both green and near-infrared fluorescence. Uptake by the tumors was higher for the Ab-FL-Cy5.5 than for the IgG-Cy5.5 probe. All tumors could be visualized by in vivo imaging with an acceptable tumor to background ratio. Ex vivo studies demonstrated the advantages of using green fluorescence imaging to guide the resection of tumor tissues. These preliminary data indicate that the Ab-FL-Cy5.5 probe is promising for further tumor imaging applications and clinical translation.


TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10.

  • Peng Tan‎ et al.
  • PLoS biology‎
  • 2018‎

Cancer cells adopt various modes of migration during metastasis. How the ubiquitination machinery contributes to cancer cell motility remains underexplored. Here, we report that tripartite motif (TRIM) 59 is frequently up-regulated in metastatic breast cancer, which is correlated with advanced clinical stages and reduced survival among breast cancer patients. TRIM59 knockdown (KD) promoted apoptosis and inhibited tumor growth, while TRIM59 overexpression led to the opposite effects. Importantly, we uncovered TRIM59 as a key regulator of cell contractility and adhesion to control the plasticity of metastatic tumor cells. At the molecular level, we identified programmed cell death protein 10 (PDCD10) as a target of TRIM59. TRIM59 stabilized PDCD10 by suppressing RING finger and transmembrane domain-containing protein 1 (RNFT1)-induced lysine 63 (K63) ubiquitination and subsequent phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa (p62)-selective autophagic degradation. TRIM59 promoted PDCD10-mediated suppression of Ras homolog family member A (RhoA)-Rho-associated coiled-coil kinase (ROCK) 1 signaling to control the transition between amoeboid and mesenchymal invasiveness. PDCD10 overexpression or administration of a ROCK inhibitor reversed TRIM59 loss-induced contractile phenotypes, thereby accelerating cell migration, invasion, and tumor formation. These findings establish the rationale for targeting deregulated TRIM59/PDCD10 to treat breast cancer.


Central 5-hydroxytryptamine (5-HT) mediates colonic motility by hypothalamus oxytocin-colonic oxytocin receptor pathway.

  • Tao-Fang Xi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Gut-derived 5-hydroxytryptamine (5-HT) is well known for its role in mediating colonic motility function. However, it is not very clear whether brain-derived 5-HT is involved in the regulation of colonic motility. In this study, we used central 5-HT knockout (KO) mice to investigate whether brain-derived 5-HT mediates colonic motility, and if so, whether it involves oxytocin (OT) production in the hypothalamus and OT receptor in the colon. Colon transit time was prolonged in KO mice. The OT levels in the hypothalamus and serum were decreased significantly in the KO mice compared to wild-type (WT) controls. OT increased colonic smooth muscle contraction in both KO and WT mice, and the effects were blocked by OT receptor antagonist and tetrodotoxin but not by hexamethonium or atropine. Importantly, the OT-induced colonic smooth muscle contraction was decreased significantly in the KO mice relative to WT. The OT receptor expression of colon was detected in colonic myenteric plexus of mice. Central 5-HT is involved in the modulation of colonic motility which may modulate through its regulation of OT synthesis in the hypothalamus. Our results reveal a central 5-HT - hypothalamus OT - colonic OT receptor axis, providing a new target for the treatment of brain-gut dysfunction.


Global analysis of tRNA and translation factor expression reveals a dynamic landscape of translational regulation in human cancers.

  • Zhao Zhang‎ et al.
  • Communications biology‎
  • 2018‎

The protein translational system, including transfer RNAs (tRNAs) and several categories of enzymes, plays a key role in regulating cell proliferation. Translation dysregulation also contributes to cancer development, though relatively little is known about the changes that occur to the translational system in cancer. Here, we present global analyses of tRNAs and three categories of enzymes involved in translational regulation in ~10,000 cancer patients across 31 cancer types from The Cancer Genome Atlas. By analyzing the expression levels of tRNAs at the gene, codon, and amino acid levels, we identified unequal alterations in tRNA expression, likely due to the uneven distribution of tRNAs decoding different codons. We find that overexpression of tRNAs recognizing codons with a low observed-over-expected ratio may overcome the translational bottleneck in tumorigenesis. We further observed overall overexpression and amplification of tRNA modification enzymes, aminoacyl-tRNA synthetases, and translation factors, which may play synergistic roles with overexpression of tRNAs to activate the translational systems across multiple cancer types.


Cardiac proteomics reveals the potential mechanism of microtubule associated protein 4 phosphorylation-induced mitochondrial dysfunction.

  • Lingfei Li‎ et al.
  • Burns & trauma‎
  • 2019‎

Our previous work suggested that microtubule associated protein 4 (MAP4) phosphorylation led to mitochondrial dysfunction in MAP4 phosphorylation mutant mice with cardiomyopathy, but the detailed mechanism was still unknown. Thus, the aim of this study was to investigate the potential mechanism involved in mitochondrial dysfunction responsible for cardiomyopathy.


Recent polyploidization events in three Saccharum founding species.

  • Jisen Zhang‎ et al.
  • Plant biotechnology journal‎
  • 2019‎

The complexity of polyploid Saccharum genomes hindered progress of genome research and crop improvement in sugarcane. To understand their genome structure, transcriptomes of 59 F1 individuals derived from S. officinarumLA Purple and S. robustum Molokai 5829 (2n = 80, x = 10 for both) were sequenced, yielding 11 157 and 8998 SNPs and 83 and 105 linkage groups, respectively. Most markers in each linkage group aligned to single sorghum chromosome. However, 71 interchromosomal rearrangements were detected between sorghum and S. officinarum or S. robustum, and 24 (33.8%) of them were shared between S. officinarum and S. robustum, indicating their occurrence before the speciation event that separated these two species. More than 2000 gene pairs from S. spontaneum, S. officinarum and S. robustum were analysed to estimate their divergence time. Saccharum officinarum and S. robustum diverged about 385 thousand years ago, and the whole-genome duplication events occurred after the speciation event because of shared interchromosomal rearrangements. The ancestor of these two species diverged from S. spontaneum about 769 thousand years ago, and the reduction in basic chromosome number from 10 to 8 in S. spontaneum occurred after the speciation event but before the two rounds of whole-genome duplication. Our results proved that S. officinarum is a legitimate species in its own right and not a selection from S. robustum during the domestication process in the past 10 000 years. Our findings rejected a long-standing hypothesis and clarified the timing of speciation and whole-genome duplication events in Saccharum.


RBPJ polymorphisms associated with cerebral infarction diseases in Chinese Han population: A Clinical Trial/Experimental Study (CONSORT Compliant).

  • Qiong Zhang‎ et al.
  • Medicine‎
  • 2018‎

Cerebral small vessel diseases (CSVDs) are a group of brain pathological processes involving cerebral small arteries, brain venules, and capillaries. The recombination signal-binding protein Jκ (RBPJ) is implicated in the pathogenesis of these diseases but its actual roles need confirmation. The aim of this work was to evaluate variations in RBPJ gene for their possible associations with the disease.


Genomic landscape and mutational impacts of recurrently mutated genes in cancers.

  • Baolin Liu‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2018‎

Cancer genes tend to be highly mutated under positive selection. Better understanding the recurrently mutated genes (RMGs) in cancer is critical for explicating the mechanisms of tumorigenesis and providing vital clues for therapy. Although some studies have investigated functional impacts of RMGs in specific cancer types, a comprehensive analysis of RMGs and their mutational impacts across cancers is still needed.


Melatonin regulates the development and function of bovine Sertoli cells via its receptors MT1 and MT2.

  • Wu-Cai Yang‎ et al.
  • Animal reproduction science‎
  • 2014‎

Melatonin and its receptors are found in the testis of many species, where they mediate testicular functions. The present study aimed to investigate the expression of melatonin receptors (MT1 and MT2) in bovine Sertoli cells (SCs), using reverse transcription polymerase chain reaction (RT-PCR) and western blot. In addition, we assessed the mRNA levels of spermatogenesis-related genes (real-time PCR) and secretion of inhibin B after treatment with various concentrations (0, 80, 160, and 320 pg/mL) of melatonin at different time points (24, 48, or 72 h). We found that bovine SCs express MT1 and MT2 receptors, which were regulated by melatonin in time- and dose-dependent manners after treatment with melatonin. Exogenous melatonin up-regulated the expression of spermatogenesis-related genes, including Cyclin D1, Cyclin E, Pdgfa, Dhh, Occludin, and Claudin, and decreased the mRNA levels of P21 and Kit1 in a time or dose-dependent manner. Meanwhile, melatonin supplementation significantly affected Inhba, Inhbb and Inha mRNA expression. These findings were consistent with inhibin B levels detected in the culture medium. In conclusion, exogenous melatonin acts via its receptors and appears to play regulatory roles in the development and function of bovine SCs.


Downregulation of CD9 in keratinocyte contributes to cell migration via upregulation of matrix metalloproteinase-9.

  • Xu-pin Jiang‎ et al.
  • PloS one‎
  • 2013‎

Tetraspanin CD9 has been implicated in various cellular and physiological processes, including cell migration. In our previous study, we found that wound repair is delayed in CD9-null mice, suggesting that CD9 is critical for cutaneous wound healing. However, many cell types, including immune cells, endothelial cells, keratinocytes and fibroblasts undergo marked changes in gene expression and phenotype, leading to cell proliferation, migration and differentiation during wound repair, whether CD9 regulates kerationcytes migration directly remains unclear. In this study, we showed that the expression of CD9 was downregulated in migrating keratinocytes during wound repair in vivo and in vitro. Recombinant adenovirus vector for CD9 silencing or overexpressing was constructed and used to infect HaCaT cells. Using cell scratch wound assay and cell migration assay, we have also demonstrated that downregulation of CD9 promoted keratinocyte migration in vitro, whereas CD9 overexpression inhibited cell migration. Moreover, CD9 inversely regulated the activity and expression of MMP-9 in keratinocytes, which was involved in CD9-regulated keratinocyte migration. Importantly, CD9 silencing-activated JNK signaling was accompanied by the upregulation of MMP-9 activity and expression. Coincidentally, we found that SP600125, a JNK pathway inhibitor, decreased the activity and expression of MMP-9 of CD9-silenced HaCaT cells. Thus, our results suggest that CD9 is downregulated in migrating keratinocytes in vivo and in vitro, and a low level of CD9 promotes keratinocyte migration in vitro, in which the regulation of MMP-9 through the JNK pathway plays an important role.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: