Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 281 papers

Comparative analysis of the immunogenicity of SARS-CoV nucleocapsid DNA vaccine administrated with different routes in mouse model.

  • Hui Hu‎ et al.
  • Vaccine‎
  • 2009‎

The development of strategies to augment the immunogenicity of DNA vaccines is critical for improving their clinical utility. One such strategy involves using the different immune routes with DNA vaccines. In the present study, the immunogenicity of SARS-CoV nucleocapsid DNA vaccine, induced by using the current routine vaccination routes (intramuscularly, by electroporation, or orally using live-attenuated Salmonella typhimurium), was compared in mouse model. The comparison between the three vaccination routes indicated that immunization intramuscularly induced a moderate T cell response and antibody response. Mice administrated by electroporation induced the highest antibody response among the three immunization groups and a mid-level of cellular response. In contrast, the orally DNA vaccine evoked vigorous T cell response and a weak antibody production. These results indicated that the distinct types of immune responses were generated by the different routes of DNA immunization. In addition, our results also show that the delivery of DNA vaccines by electroporation and orally using live-attenuated Salmonella in vivo is an effective method to increase the immune responses. Further studies could be carried out using a combination strategy of both oral and electroporation immunizations to stimulate higher cellular and humoral immune responses.


Virus-like particles of SARS-like coronavirus formed by membrane proteins from different origins demonstrate stimulating activity in human dendritic cells.

  • Bingke Bai‎ et al.
  • PloS one‎
  • 2008‎

The pathogenesis of SARS coronavirus (CoV) remains poorly understood. In the current study, two recombinant baculovirus were generated to express the spike (S) protein of SARS-like coronavirus (SL-CoV) isolated from bats (vAcBS) and the envelope (E) and membrane (M) proteins of SARS-CoV, respectively. Co-infection of insect cells with these two recombinant baculoviruses led to self-assembly of virus-like particles (BVLPs) as demonstrated by electron microscopy. Incorporation of S protein of vAcBS (BS) into VLPs was confirmed by western blot and immunogold labeling. Such BVLPs up-regulated the level of CD40, CD80, CD86, CD83, and enhanced the secretion of IL-6, IL-10 and TNF-alpha in immature dendritic cells (DCs). Immune responses were compared in immature DCs inoculated with BVLPs or with VLPs formed by S, E and M proteins of human SARS-CoV. BVLPs showed a stronger ability to stimulate DCs in terms of cytokine induction as evidenced by 2 to 6 fold higher production of IL-6 and TNF-alpha. Further study indicated that IFN-gamma+ and IL-4+ populations in CD4+ T cells increased upon co-cultivation with DCs pre-exposed with BVLPs or SARS-CoV VLPs. The observed difference in DC-stimulating activity between BVLPs and SARS CoV VLPs was very likely due to the S protein. In agreement, SL-CoV S DNA vaccine evoked a more vigorous antibody response and a stronger T cell response than SARS-CoV S DNA in mice. Our data have demonstrated for the first time that SL-CoV VLPs formed by membrane proteins of different origins, one from SL-CoV isolated from bats (BS) and the other two from human SARS-CoV (E and M), activated immature DCs and enhanced the expression of co-stimulatory molecules and the secretion of cytokines. Finding in this study may provide important information for vaccine development as well as for understanding the pathogenesis of SARS-like CoV.


MiRNA and TF co-regulatory network analysis for the pathology and recurrence of myocardial infarction.

  • Ying Lin‎ et al.
  • Scientific reports‎
  • 2015‎

Myocardial infarction (MI) is a leading cause of death in the world and many genes are involved in it. Transcription factor (TFs) and microRNAs (miRNAs) are key regulators of gene expression. We hypothesized that miRNAs and TFs might play combinatory regulatory roles in MI. After collecting MI candidate genes and miRNAs from various resources, we constructed a comprehensive MI-specific miRNA-TF co-regulatory network by integrating predicted and experimentally validated TF and miRNA targets. We found some hub nodes (e.g. miR-16 and miR-26) in this network are important regulators, and the network can be severed as a bridge to interpret the associations of previous results, which is shown by the case of miR-29 in this study. We also constructed a regulatory network for MI recurrence and found several important genes (e.g. DAB2, BMP6, miR-320 and miR-103), the abnormal expressions of which may be potential regulatory mechanisms and markers of MI recurrence. At last we proposed a cellular model to discuss major TF and miRNA regulators with signaling pathways in MI. This study provides more details on gene expression regulation and regulators involved in MI progression and recurrence. It also linked up and interpreted many previous results.


A census of nuclear cyanobacterial recruits in the plant kingdom.

  • Szabolcs Makai‎ et al.
  • PloS one‎
  • 2015‎

The plastids and mitochondria of the eukaryotic cell are of endosymbiotic origin. These events occurred ~2 billion years ago and produced significant changes in the genomes of the host and the endosymbiont. Previous studies demonstrated that the invasion of land affected plastids and mitochondria differently and that the paths of mitochondrial integration differed between animals and plants. Other studies examined the reasons why a set of proteins remained encoded in the organelles and were not transferred to the nuclear genome. However, our understanding of the functional relations of the transferred genes is insufficient. In this paper, we report a high-throughput phylogenetic analysis to identify genes of cyanobacterial origin for plants of different levels of complexity: Arabidopsis thaliana, Chlamydomonas reinhardtii, Physcomitrella patens, Populus trichocarpa, Selaginella moellendorffii, Sorghum bicolor, Oryza sativa, and Ostreococcus tauri. Thus, a census of cyanobacterial gene recruits and a study of their function are presented to better understand the functional aspects of plastid symbiogenesis. From algae to angiosperms, the GO terms demonstrated a gradual expansion over functionally related genes in the nuclear genome, beginning with genes related to thylakoids and photosynthesis, followed by genes involved in metabolism, and finally with regulation-related genes, primarily in angiosperms. The results demonstrate that DNA is supplied to the nuclear genome on a permanent basis with no regard to function, and only what is needed is kept, which thereby expands on the GO space along the related genes.


Extracellular vesicle sorting of α-Synuclein is regulated by sumoylation.

  • Marcel Kunadt‎ et al.
  • Acta neuropathologica‎
  • 2015‎

Extracellular α-Synuclein has been implicated in interneuronal propagation of disease pathology in Parkinson's Disease. How α-Synuclein is released into the extracellular space is still unclear. Here, we show that α-Synuclein is present in extracellular vesicles in the central nervous system. We find that sorting of α-Synuclein in extracellular vesicles is regulated by sumoylation and that sumoylation acts as a sorting factor for targeting of both, cytosolic and transmembrane proteins, to extracellular vesicles. We provide evidence that the SUMO-dependent sorting utilizes the endosomal sorting complex required for transport (ESCRT) by interaction with phosphoinositols. Ubiquitination of cargo proteins is so far the only known determinant for ESCRT-dependent sorting into the extracellular vesicle pathway. Our study reveals a function of SUMO protein modification as a Ubiquitin-independent ESCRT sorting signal, regulating the extracellular vesicle release of α-Synuclein. We deciphered in detail the molecular mechanism which directs α-Synuclein into extracellular vesicles which is of highest relevance for the understanding of Parkinson's disease pathogenesis and progression at the molecular level. We furthermore propose that sumo-dependent sorting constitutes a mechanism with more general implications for cell biology.


Health effects of air pollution on length of respiratory cancer survival.

  • Xiaohui Xu‎ et al.
  • BMC public health‎
  • 2013‎

Air pollution has been extensively and consistently linked with mortality. However, no study has investigated the health effects of air pollution on length of survival among diagnosed respiratory cancer patients.


Using a partially randomized patient preference study design to evaluate the therapeutic effect of acupuncture and cupping therapy for fibromyalgia: study protocol for a partially randomized controlled trial.

  • Hui-Juan Cao‎ et al.
  • Trials‎
  • 2014‎

Conducting randomized controlled trials on traditional Chinese non-drug therapies has been limited by factors such as patient preference to specific treatment modality. The aim of this study is to investigate the feasibility of applying a partially randomized patient preference (PRPP) trial model in evaluating the efficacy of two types of traditional Chinese medicine therapies, acupuncture and cupping, for fibromyalgia while accounting for patients' preference of either therapeutic modality.


lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse.

  • Jing Gong‎ et al.
  • Nucleic acids research‎
  • 2015‎

Long non-coding RNAs (lncRNAs) play key roles in various cellular contexts and diseases by diverse mechanisms. With the rapid growth of identified lncRNAs and disease-associated single nucleotide polymorphisms (SNPs), there is a great demand to study SNPs in lncRNAs. Aiming to provide a useful resource about lncRNA SNPs, we systematically identified SNPs in lncRNAs and analyzed their potential impacts on lncRNA structure and function. In total, we identified 495,729 and 777,095 SNPs in more than 30,000 lncRNA transcripts in human and mouse, respectively. A large number of SNPs were predicted with the potential to impact on the miRNA-lncRNA interaction. The experimental evidence and conservation of miRNA-lncRNA interaction, as well as miRNA expressions from TCGA were also integrated to prioritize the miRNA-lncRNA interactions and SNPs on the binding sites. Furthermore, by mapping SNPs to GWAS results, we found that 142 human lncRNA SNPs are GWAS tagSNPs and 197,827 lncRNA SNPs are in the GWAS linkage disequilibrium regions. All these data for human and mouse lncRNAs were imported into lncRNASNP database (http://bioinfo.life.hust.edu.cn/lncRNASNP/), which includes two sub-databases lncRNASNP-human and lncRNASNP-mouse. The lncRNASNP database has a user-friendly interface for searching and browsing through the SNP, lncRNA and miRNA sections.


A single nucleotide polymorphism in the 3'-UTR of STAT3 regulates its expression and reduces risk of pancreatic cancer in a Chinese population.

  • Beibei Zhu‎ et al.
  • Oncotarget‎
  • 2016‎

Pancreatic cancer (PC) is one of the deadliest solid malignancies carrying a gloomy 5-year survival rate less than 5%. The signal transducer and activator of transcription 3 (STAT3) is a common transcriptional regulator, whose aberrant expression has been widely found in human cancers, including PC. Our current study aimed to illustrate the roles of common variants, in the three prime untranslated region (3'UTR) of STAT3, in modifying the risk of PC through two-stage case-control studies integrating biological experiments. We first explored the associations between two common variants (rs1053004 and rs1053005) and PC risk in 774 PC cases and 777 controls. Only rs1053004 T > C showed a significant association with a reduced risk of PC with an odds ratio (OR) and 95% confidence interval (CI) of 0.85 (0.74-0.98). Then we attempted to validate the association in another 940 cases and 1398 controls, and the significant association persisted with OR (95%CI) of 0.86 (0.76-0.97). Dual luciferase reporter gene assays indicated that C allele conferred a higher expression of STAT3 in three PC cell lines including Panc-1 (P = 3.0 × 10-3), BxPC-3 (P = 6.7 × 10-5) and SW1990 (P = 4.0 × 10-3). In conclusion, the current study provided evidence that rs1053004 T > C in 3'UTR of STAT3 may decrease the risk of PC through up-regulating the gene expression.


AnimalTFDB: a comprehensive animal transcription factor database.

  • Hong-Mei Zhang‎ et al.
  • Nucleic acids research‎
  • 2012‎

Transcription factors (TFs) are proteins that bind to specific DNA sequences, thereby playing crucial roles in gene-expression regulation through controlling the transcription of genetic information from DNA to RNA. Transcription cofactors and chromatin remodeling factors are also essential in the gene transcriptional regulation. Identifying and annotating all the TFs are primary and crucial steps for illustrating their functions and understanding the transcriptional regulation. In this study, based on manual literature reviews, we collected and curated 72 TF families for animals, which is currently the most complete list of TF families in animals. Then, we systematically characterized all the TFs in 50 animal species and constructed a comprehensive animal TF database, AnimalTFDB. To better serve the community, we provided detailed annotations for each TF, including basic information, gene structure, functional domain, 3D structure hit, Gene Ontology, pathway, protein-protein interaction, paralogs, orthologs, potential TF-binding sites and targets. In addition, we collected and annotated transcription cofactors and chromatin remodeling factors. AnimalTFDB has a user-friendly web interface with multiple browse and search functions, as well as data downloading. It is freely available at http://www.bioguo.org/AnimalTFDB/.


Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection.

  • Chun-Ming Lin‎ et al.
  • Veterinary research‎
  • 2015‎

Although the original US porcine epidemic diarrhea virus (PEDV) was confirmed as highly virulent by multiple studies, the virulence of spike-insertion deletion (S-INDEL) PEDV strains is undefined. In this study, 3-4 day-old conventional suckling piglets were inoculated with S-INDEL PEDV Iowa106 (4 pig litters) to study its virulence. Two litters of age-matched piglets were inoculated with either the original US PEDV PC21A or mock as positive and negative controls, respectively. Subsequently, all pigs were challenged with the original US PEDV PC21A on 21-29 days post-inoculation (dpi) to assess cross-protection. All S-INDEL Iowa106- and the original US PC21A-inoculated piglets developed diarrhea. However, the severity of clinical signs, mortality (0-75%) and fecal PEDV RNA shedding titers varied among the four S-INDEL Iowa106-inoculated litters. Compared with the original PC21A, piglets euthanized/died acutely from S-INDEL Iowa106 infection had relatively milder villous atrophy, lower antigen scores and more limited intestinal infection. Two of four S-INDEL Iowa106-infected sows and the original PC21A-infected sow showed anorexia and watery diarrhea for 1-4 days. After the original PC21A challenge, a subset (13/16) of S-INDEL Iowa106-inoculated piglets developed diarrhea, whereas all (5/5) and no (0/4) pigs in the mock and original PC21A-inoculated pigs had diarrhea, respectively. Our results suggest that the virulence of S-INDEL PEDV Iowa106 was less than the original US PEDV PC21A in suckling pigs, with 100% morbidity and 18% (6/33) overall (0-75%) mortality in suckling pigs depending on factors such as the sow's health and lactation and the piglets' birth weight. Prior infection by S-INDEL Iowa106 provided partial cross-protection to piglets against the original PC21A challenge at 21-29 dpi.


Identification of a Potential Regulatory Variant for Colorectal Cancer Risk Mapping to Chromosome 5q31.1: A Post-GWAS Study.

  • Juntao Ke‎ et al.
  • PloS one‎
  • 2015‎

Large-scale genome-wide association studies (GWAS) have established chromosome 5q31.1 as a susceptibility locus for colorectal cancer (CRC), which was still lack of causal genetic variants. We searched potentially regulatory single nucleotide polymorphisms (SNPs) in the overlap region between linkage disequilibrium (LD) block of 5q31.1 and regulatory elements predicted by histone modifications, then tested their association with CRC via a case-control study. Among three candidate common variants, we found rs17716310 conferred significantly (heterozygous model: OR = 1.273, 95% confidence interval (95%CI) = 1.016-1.595, P = 0.036) and marginally (dominant model: OR = 1.238, 95%CI = 1.000-1.532, P = 0.050) increase risk for CRC in a Chinese population including 695 cases and 709 controls. This variation was suggested to be regulatory altering the activity of enhancer that control PITX1 expression. Using epigenetic information such as chromatin immunoprecipitation-sequencing (ChIP-seq) data might help researchers to interpret the results of GWAS and locate causal variants for diseases in post-GWAS era.


Identification of residues important for substrate uptake in a glucose transporter from the filamentous fungus Trichoderma reesei.

  • Weixin Zhang‎ et al.
  • Scientific reports‎
  • 2015‎

The glucose transporter is an important player in cell metabolism that mediates the intracellular uptake of glucose. Here, we characterized the glucose transporter Stp1 from the filamentous fungus Trichoderma reesei. The individual substitution of several conserved residues for Ala in Stp1 corresponding to those interacting with D-glucose in the xylose/H(+) symporter XylE inflicted contrasting effects on its ability to support the growth of an hxt-null yeast on glucose. The targeted change of Phe 50, proximal to the substrate-binding site, was also found to exert a profound effect on the activity of Stp1. In contrast with the charged residues, the substitution of Phe 50 with either the hydrophilic residues Asn and Gln or the small residues Gly and Ala significantly enhanced the transport of glucose and its fluorescent analogue, 2-NBDG. On the other hand, a variant with the three substitutions I115F, F199I and P214L displayed remarkably improved activity on glucose and 2-NBDG transport. Further analysis indicated that the combined mutations of Ile 115 and Pro 214, positioned on the lateral surface of the Stp1 N-domain, fully accounted for the enhanced transport activity. These results provide insight into the structural basis for glucose uptake in fungal sugar transporters.


Characteristics and outcomes for patients with advanced vaginal or vulvar cancer referred to a phase I clinical trials program: the MD Anderson cancer center experience.

  • Siqing Fu‎ et al.
  • Gynecologic oncology research and practice‎
  • 2015‎

Early-stage vaginal and vulvar cancer can be cured. But outcomes of patients with metastatic disease are poor. Thus, new therapeutic strategies are urgently required.


Integration of transcriptome, proteome and metabolism data reveals the alkaloids biosynthesis in Macleaya cordata and Macleaya microcarpa.

  • Jianguo Zeng‎ et al.
  • PloS one‎
  • 2013‎

The Macleaya spp., including Macleaya cordata and Macleaya microcarpa, are traditional anti-virus, inflammation eliminating, and insecticide herb medicines for their isoquinoline alkaloids. They are also known as the basis of the popular natural animal food addictive in Europe. However, few studies especially at genomics level were conducted on them. Hence, we performed the Macleaya spp. transcriptome and integrated it with iTRAQ proteome analysis in order to identify potential genes involved in alkaloids biosynthesis.


Genomic landscape and mutational impacts of recurrently mutated genes in cancers.

  • Baolin Liu‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2018‎

Cancer genes tend to be highly mutated under positive selection. Better understanding the recurrently mutated genes (RMGs) in cancer is critical for explicating the mechanisms of tumorigenesis and providing vital clues for therapy. Although some studies have investigated functional impacts of RMGs in specific cancer types, a comprehensive analysis of RMGs and their mutational impacts across cancers is still needed.


The Role of Berberine in the Prevention of HIF-1α Activation to Alleviate Adipose Tissue Fibrosis in High-Fat-Diet-Induced Obese Mice.

  • Meilin Hu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Berberine (BBR) is the main active ingredient of a traditional Chinese herb Coptis chinensis. It has been reported to exhibit beneficial effects in treating diabetes and obesity. However, the underlying mechanism has not been fully elucidated. Adipose tissue fibrosis is a hallmark of obesity-associated adipose tissue dysfunction. HIF-1α plays a key role in adipose tissue fibrosis, which closely linked to metabolic dysfunction in obese state. We hypothesized that BBR may alleviate obesity-induced adipose tissue fibrosis and associated metabolic dysfunction through inhibition of HIF-1α. To test this hypothesis, we treated high fat diet (HFD) feeding mice with different dose of BBR (100 mg/kg, 200 mg/kg, and 300 mg/kg) for 8 weeks. We found that BBR treatment greatly decreased the body weight gain and reduced insulin resistance induced by HFD. Data also revealed that BBR improved histologic fibrous of epididymal white adipose tissue (eWAT) and was accompanied with inhibition of the abnormal synthesis and deposition of extracellular matrix (ECM) proteins, such as collagen and fibronectin. We also found that BBR treatment suppressed the expression of HIF-1α and decreased the mRNA expression of LOX in epididymal adipose tissue, which plays a key role in fibrosis development. Taken together, these results suggest that BBR can regulate metabolic homeostasis and suppress adipose tissue fibrosis through inhibiting the expression of HIF-1α.


Global analysis of tRNA and translation factor expression reveals a dynamic landscape of translational regulation in human cancers.

  • Zhao Zhang‎ et al.
  • Communications biology‎
  • 2018‎

The protein translational system, including transfer RNAs (tRNAs) and several categories of enzymes, plays a key role in regulating cell proliferation. Translation dysregulation also contributes to cancer development, though relatively little is known about the changes that occur to the translational system in cancer. Here, we present global analyses of tRNAs and three categories of enzymes involved in translational regulation in ~10,000 cancer patients across 31 cancer types from The Cancer Genome Atlas. By analyzing the expression levels of tRNAs at the gene, codon, and amino acid levels, we identified unequal alterations in tRNA expression, likely due to the uneven distribution of tRNAs decoding different codons. We find that overexpression of tRNAs recognizing codons with a low observed-over-expected ratio may overcome the translational bottleneck in tumorigenesis. We further observed overall overexpression and amplification of tRNA modification enzymes, aminoacyl-tRNA synthetases, and translation factors, which may play synergistic roles with overexpression of tRNAs to activate the translational systems across multiple cancer types.


Tumor Cell-Derived Microvesicles Induced Not Epithelial-Mesenchymal Transition but Apoptosis in Human Proximal Tubular (HK-2) Cells: Implications for Renal Impairment in Multiple Myeloma.

  • Aiqi Zhao‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Renal impairment (RI) is one of the hallmarks of multiple myeloma (MM) and carries a poor prognosis. Microvesicles (MVs) are membrane vesicles and play an important role in disease progression. Here, we investigated the role of MVs derived from MM cells (MM-MVs) in RI of MM. We found that MM-MVs significantly inhibited viability and induced apoptosis, but not epithelial-mesenchymal transition in human kidney-2 (HK-2), a human renal tubular epithelial cell line. The protein levels of cleaved caspase-3, 8, and 9, and E-cadherin, were increased, but vementin levels were decreased in the HK-2 cells treated with MM-MVs. Through a comparative sequencing and analysis of RNA content between the MVs from RPMI8226 MM cells (RPMI8226-MVs) and K562 leukemia cells, RPMI8226-MVs were enriched with more renal-pathogenic miRNAs, in which the selective miRNAs may participate in the up-regulation of the levels of cleaved caspase-3. Furthermore, the levels of CD138+ circulating MVs (cirMVs) in the peripheral blood were positively correlated with the severity of RI in newly-diagnosed MM. Our study supports MM-MVs representing a previously undescribed factor and playing a potential role in the development of RI of MM patients, and sheds light on the potential application of CD138+ cirMV counts in precise diagnosis of RI in MM and exploring MM-MVs as a therapeutic target.


Development of a one-step RT-PCR assay for detection of pancoronaviruses (α-, β-, γ-, and δ-coronaviruses) using newly designed degenerate primers for porcine and avian `fecal samples.

  • Hui Hu‎ et al.
  • Journal of virological methods‎
  • 2018‎

Coronaviruses (CoVs) are critical human and animal pathogens because of their potential to cause severe epidemics of respiratory or enteric diseases. In pigs, the newly emerged porcine deltacoronavirus (PDCoV) and re-emerged porcine epidemic diarrhea virus (PEDV) reported in the US and Asia, as well as the discovery of novel CoVs in wild bats or birds, has necessitated development of improved detection and control measures for these CoVs. Because the previous pancoronavirus (panCoV) RT-PCR established in our laboratory in 2007-2011 did not detect deltacoronaviruses (δ-CoVs) in swine fecal and serum samples, our goal was to develop a new panCoV RT-PCR assay to detect known human and animal CoVs, including δ-CoVs. In this study, we designed a new primer set to amplify a 668 bp-region within the RNA-dependent RNA polymerase (RdRP) gene that encodes the most conserved protein domain of α-, β-, γ-, and δ-CoVs. We established a one-step panCoV RT-PCR assay and standardized the assay conditions. The newly established panCoV RT-PCR assay was demonstrated to have a high sensitivity and specificity. Using a panel of 60 swine biological samples (feces, intestinal contents, and sera) characterized by PEDV, PDCoV and transmissible gastroenteritis virus-specific RT-PCR assays, we demonstrated that sensitivity and specificity of the newly established panCoV RT-PCR assay were 100%. 400 avian fecal (RNA) samples were further tested simultaneously for CoV by the new panCoV RT-PCR and a one-step RT-PCR assay with the δ-CoV nucleocapsid-specific universal primers. Four of 400 avian samples were positive for CoV, three of which were positive for δ-CoV by the conventional RT-PCR. PanCoV RT-PCR fragments for 3 of the 4 CoVs were sequenced. Phylogenetic analysis revealed the presence of one γ-CoV and two δ-CoV in the sequenced samples. The newly designed panCoV RT-PCR assay should be useful for the detection of currently known CoVs in animal biological samples.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: