Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

A synthetic three-dimensional niche system facilitates generation of functional hematopoietic cells from human-induced pluripotent stem cells.

  • Yulin Xu‎ et al.
  • Journal of hematology & oncology‎
  • 2016‎

The efficient generation of hematopoietic stem cells (HSCs) from human-induced pluripotent stem cells (iPSCs) holds great promise in personalized transplantation therapies. However, the derivation of functional and transplantable HSCs from iPSCs has had very limited success thus far.


17β-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury.

  • Jing Zhou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2014‎

Stem cell transplantation represents a promising strategy for the repair of spinal cord injury (SCI). However, the low survival rate of the grafted cells is a major obstacle hindering clinical success because of ongoing secondary injury processes, which includes excitotoxicity, inflammation and oxidative stress. Previous studies have shown that 17b-estradiol (E2) protects several cell types against cytotoxicity. Thus, we examined the effects of E2 on the viability of human eyelid adipose-derived stem cells (hEASCs) in vitro with hydrogen peroxide (H₂O₂)-induced cell model and in vivo within a rat SCI model. Our results showed that E2 protected hEASCs against H₂O₂-induced cell death in vitro, and enhanced the survival of grafted hEASCs in vivo by reducing apoptosis. Additionally, E2 also enhanced the secretion of growth factors by hEASCs, thereby making the local microenvironment more conducive for tissue regeneration. Overall, E2 administration enhanced the therapeutic efficacy of hEASCs transplantation and facilitated motor function recovery after SCI. Hence, E2 administration may be an intervention of choice for enhancing survival of transplanted hEASCs after SCI.


USP7 represses lineage differentiation genes in mouse embryonic stem cells by both catalytic and noncatalytic activities.

  • Chao Liu‎ et al.
  • Science advances‎
  • 2023‎

USP7, a ubiquitin-specific peptidase (USP), plays an important role in many cellular processes through its catalytic deubiquitination of various substrates. However, its nuclear function that shapes the transcriptional network in mouse embryonic stem cells (mESCs) remains poorly understood. We report that USP7 maintains mESC identity through both catalytic activity-dependent and -independent repression of lineage differentiation genes. Usp7 depletion attenuates SOX2 levels and derepresses lineage differentiation genes thereby compromising mESC pluripotency. Mechanistically, USP7 deubiquitinates and stabilizes SOX2 to repress mesoendodermal (ME) lineage genes. Moreover, USP7 assembles into RYBP-variant Polycomb repressive complex 1 and contributes to Polycomb chromatin-mediated repression of ME lineage genes in a catalytic activity-dependent manner. USP7 deficiency in its deubiquitination function is able to maintain RYBP binding to chromatin for repressing primitive endoderm-associated genes. Our study demonstrates that USP7 harbors both catalytic and noncatalytic activities to repress different lineage differentiation genes, thereby revealing a previously unrecognized role in controlling gene expression for maintaining mESC identity.


ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover.

  • Maomao Pu‎ et al.
  • Protein & cell‎
  • 2023‎

Lipophagy, the selective engulfment of lipid droplets (LDs) by autophagosomes for lysosomal degradation, is critical to lipid and energy homeostasis. Here we show that the lipid transfer protein ORP8 is located on LDs and mediates the encapsulation of LDs by autophagosomal membranes. This function of ORP8 is independent of its lipid transporter activity and is achieved through direct interaction with phagophore-anchored LC3/GABARAPs. Upon lipophagy induction, ORP8 has increased localization on LDs and is phosphorylated by AMPK, thereby enhancing its affinity for LC3/GABARAPs. Deletion of ORP8 or interruption of ORP8-LC3/GABARAP interaction results in accumulation of LDs and increased intracellular triglyceride. Overexpression of ORP8 alleviates LD and triglyceride deposition in the liver of ob/ob mice, and Osbpl8-/- mice exhibit liver lipid clearance defects. Our results suggest that ORP8 is a lipophagy receptor that plays a key role in cellular lipid metabolism.


OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells.

  • Anthony Parenti‎ et al.
  • Stem cell reports‎
  • 2016‎

The reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, but also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established in parallel to the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. We show that OSKM induce expression of endodermal genes, leading to formation of induced XEN (iXEN) cells, which possess key properties of blastocyst-derived XEN cells, including morphology, transcription profile, self-renewal, and multipotency. Our data show that iXEN cells arise in parallel to induced pluripotent stem cells, indicating that OSKM drive cells to two distinct cell fates during reprogramming.


Antioxidant supplementation reduces genomic aberrations in human induced pluripotent stem cells.

  • Junfeng Ji‎ et al.
  • Stem cell reports‎
  • 2014‎

Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using oncogenic transcription factors. However, this method leads to genetic aberrations in iPSCs via unknown mechanisms, which may limit their clinical use. Here, we demonstrate that the supplementation of growth media with antioxidants reduces the genome instability of cells transduced with the reprogramming factors. Antioxidant supplementation did not affect transgene expression level or silencing kinetics. Importantly, iPSCs made with antioxidants had significantly fewer de novo copy number variations, but not fewer coding point mutations, than iPSCs made without antioxidants. Our results suggest that the quality and safety of human iPSCs might be enhanced by using antioxidants in the growth media during the generation and maintenance of iPSCs.


Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling.

  • Yathish Jagadheesh Achar‎ et al.
  • Nucleic acids research‎
  • 2015‎

Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.


Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes.

  • Xiao Chen‎ et al.
  • Scientific reports‎
  • 2012‎

As tendon stem/progenitor cells were reported to be rare in tendon tissues, tendons as vulnerable targets of sports injury possess poor self-repair capability. Human ESCs (hESCs) represent a promising approach to tendon regeneration. But their teno-lineage differentiation strategy has yet to be defined. Here, we report that force combined with the tendon-specific transcription factor scleraxis synergistically promoted commitment of hESCs to tenocyte for functional tissue regeneration. Force and scleraxis can independently induce tendon differentiation. However, force alone concomitantly activated osteogenesis, while scleraxis alone was not sufficient to commit, but augment tendon differentiation. Scleraxis synergistically augmented the efficacy of force on teno-lineage differentiation and inhibited the osteo-lineage differentiation by antagonized BMP signaling cascade. The findings not only demonstrated a novel strategy of directing hESC differentiation to tenocyte for functional tendon regeneration, but also offered insights into understanding the network of force, scleraxis and bmp2 controlling tendon-lineage differentiation.


Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export.

  • Saskia Heybrock‎ et al.
  • Nature communications‎
  • 2019‎

The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterol-like inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.


Cooperative transport mechanism of human monocarboxylate transporter 2.

  • Bo Zhang‎ et al.
  • Nature communications‎
  • 2020‎

Proton-linked monocarboxylate transporters (MCTs) must transport monocarboxylate efficiently to facilitate monocarboxylate efflux in glycolytically active cells, and transport monocarboxylate slowly or even shut down to maintain a physiological monocarboxylate concentration in glycolytically inactive cells. To discover how MCTs solve this fundamental aspect of intracellular monocarboxylate homeostasis in the context of multicellular organisms, we analyzed pyruvate transport activity of human monocarboxylate transporter 2 (MCT2). Here we show that MCT2 transport activity exhibits steep dependence on substrate concentration. This property allows MCTs to turn on almost like a switch, which is physiologically crucial to the operation of MCTs in the cellular context. We further determined the cryo-electron microscopy structure of the human MCT2, demonstrating that the concentration sensitivity of MCT2 arises from the strong inter-subunit cooperativity of the MCT2 dimer during transport. These data establish definitively a clear example of evolutionary optimization of protein function.


The role of Cdx2 as a lineage specific transcriptional repressor for pluripotent network during the first developmental cell lineage segregation.

  • Daosheng Huang‎ et al.
  • Scientific reports‎
  • 2017‎

The first cellular differentiation event in mouse development leads to the formation of the blastocyst consisting of the inner cell mass (ICM) and trophectoderm (TE). The transcription factor CDX2 is required for proper TE specification, where it promotes expression of TE genes, and represses expression of Pou5f1 (OCT4). However its downstream network in the developing embryo is not fully characterized. Here, we performed high-throughput single embryo qPCR analysis in Cdx2 null embryos to identify CDX2-regulated targets in vivo. To identify genes likely to be regulated by CDX2 directly, we performed CDX2 ChIP-Seq on trophoblast stem (TS) cells. In addition, we examined the dynamics of gene expression changes using inducible CDX2 embryonic stem (ES) cells, so that we could predict which CDX2-bound genes are activated or repressed by CDX2 binding. By integrating these data with observations of chromatin modifications, we identify putative novel regulatory elements that repress gene expression in a lineage-specific manner. Interestingly, we found CDX2 binding sites within regulatory elements of key pluripotent genes such as Pou5f1 and Nanog, pointing to the existence of a novel mechanism by which CDX2 maintains repression of OCT4 in trophoblast. Our study proposes a general mechanism in regulating lineage segregation during mammalian development.


Fluorescent Reporters Distinguish Stem Cell Colony Subtypes During Somatic Cell Reprogramming.

  • Alexandra Moauro‎ et al.
  • Cellular reprogramming‎
  • 2022‎

Somatic cell reprogramming was first developed to create induced pluripotent stem (iPS) cells. Since that time, the highly dynamic and heterogeneous nature of the reprogramming process has come to be appreciated. Remarkably, a distinct type of stem cell, called induced extraembryonic endoderm (iXEN) stem cell, is also formed during reprogramming of mouse somatic cells by ectopic expression of the transcription factors, OCT4, SOX2, KLF4, and MYC (OSKM). The mechanisms leading somatic cells to adopt differing stem cell fates are challenging to resolve given that formation of either stem cell type is slow, stochastic, and rare. For these reasons, fluorescent gene expression reporters have provided an invaluable tool for revealing the path from the somatic state to pluripotency. However, no such reporters have been established for comparable studies of iXEN cell formation. In this study, we examined the expression of multiple fluorescent reporters, including Nanog, Oct4, and the endodermal genes, Gata4 and Gata6-alone and in combination, during reprogramming. We show that only simultaneous evaluation of Nanog and Gata4 reliably distinguishes iPS and iXEN cell colonies during reprogramming.


The regulatory mechanism of HSP70 in endoplasmic reticulum stress in pepsin-treated laryngeal epithelium cells and laryngeal cancer cells.

  • Wei Chen‎ et al.
  • Aging‎
  • 2022‎

Excessive pepsin can damage both normal laryngeal epithelial cells and laryngeal cancer (LC) cells. Heat shock protein 70 (HSP70) is closely related to pepsin. In this paper, we will explore the different significance of the regulatory role of HSP70 in endoplasmic reticulum stress (ERS) level in pepsin-treated laryngeal epithelial cells and LC cells.


The fetal lineage is susceptible to Zika virus infection within days of fertilization.

  • Jennifer L Watts‎ et al.
  • Development (Cambridge, England)‎
  • 2022‎

Adults contracting Zika virus (ZIKV) typically exhibit mild symptoms, yet ZIKV infection of pregnant individuals can cause miscarriage or birth defects in their offspring. Many studies have focused on maternal-to-fetal ZIKV transmission via blood and placenta. Notably, however, ZIKV is also transmitted sexually, raising the possibility that ZIKV could infect the embryo shortly after fertilization, long before the placenta is established. Here, we evaluate the consequences of ZIKV infection in mouse embryos during the first few days of embryogenesis. We show that divergent strains of ZIKV can infect the fetal lineage and can cause developmental arrest, raising concern for the developmental consequences of sexual ZIKV transmission. This article has an associated 'The people behind the papers' interview.


CPT1A induction following epigenetic perturbation promotes MAVS palmitoylation and activation to potentiate antitumor immunity.

  • Guiheng Zhang‎ et al.
  • Molecular cell‎
  • 2023‎

Targeting epigenetic regulators to potentiate anti-PD-1 immunotherapy converges on the activation of type I interferon (IFN-I) response, mimicking cellular response to viral infection, but how its strength and duration are regulated to impact combination therapy efficacy remains largely unknown. Here, we show that mitochondrial CPT1A downregulation following viral infection restrains, while its induction by epigenetic perturbations sustains, a double-stranded RNA-activated IFN-I response. Mechanistically, CPT1A recruits the endoplasmic reticulum-localized ZDHHC4 to catalyze MAVS Cys79-palmitoylation, which promotes MAVS stabilization and activation by inhibiting K48- but facilitating K63-linked ubiquitination. Further elevation of CPT1A incrementally increases MAVS palmitoylation and amplifies the IFN-I response, which enhances control of viral infection and epigenetic perturbation-induced antitumor immunity. Moreover, CPT1A chemical inducers augment the therapeutic effect of combined epigenetic treatment with PD-1 blockade in refractory tumors. Our study identifies CPT1A as a stabilizer of MAVS activation, and its link to epigenetic perturbation can be exploited for cancer immunotherapy.


In silico predicted structural and functional insights of all missense mutations on 2B domain of K1/K10 causing genodermatoses.

  • Santasree Banerjee‎ et al.
  • Oncotarget‎
  • 2016‎

The K1 and K10 associated genodermatoses are characterized by clinical symptoms of mild to severe redness, blistering and hypertrophy of the skin. In this paper, we set out to computationally investigate the structural and functional effects of missense mutations on the 2B domain of K1/K10 heterodimer and its consequences in disease phenotype. We modeled the structure of the K1/K10 heterodimer based on crystal structures for the human homolog K5/K14 heterodimer, and identified that the missense mutations exert their effects on stability and assembly competence of the heterodimer by altering physico-chemical properties, interatomic interactions, and inter-residue atomic contacts. Comparative structural analysis between all the missense mutations and SNPs showed that the location and physico-chemical properties of the substituted amino acid are significantly correlated with phenotypic variations. In particular, we find evidence that a particular SNP (K10, p.E443K) is a pathogenic nsSNP which disrupts formation of the hydrophobic core and destabilizes the heterodimer through the loss of interatomic interactions. Our study is the first comprehensive report analyzing the mutations located on 2B domain of K1/K10 heterodimeric coiled-coil complex.


Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system.

  • Leo C K Wan‎ et al.
  • Nucleic acids research‎
  • 2013‎

The universally conserved Kae1/Qri7/YgjD and Sua5/YrdC protein families have been implicated in growth, telomere homeostasis, transcription and the N6-threonylcarbamoylation (t(6)A) of tRNA, an essential modification required for translational fidelity by the ribosome. In bacteria, YgjD orthologues operate in concert with the bacterial-specific proteins YeaZ and YjeE, whereas in archaeal and eukaryotic systems, Kae1 operates as part of a larger macromolecular assembly called KEOPS with Bud32, Cgi121, Gon7 and Pcc1 subunits. Qri7 orthologues function in the mitochondria and may represent the most primitive member of the Kae1/Qri7/YgjD protein family. In accordance with previous findings, we confirm that Qri7 complements Kae1 function and uncover that Qri7 complements the function of all KEOPS subunits in growth, t(6)A biosynthesis and, to a partial degree, telomere maintenance. These observations suggest that Kae1 provides a core essential function that other subunits within KEOPS have evolved to support. Consistent with this inference, Qri7 alone is sufficient for t(6)A biosynthesis with Sua5 in vitro. In addition, the 2.9 Å crystal structure of Qri7 reveals a simple homodimer arrangement that is supplanted by the heterodimerization of YgjD with YeaZ in bacteria and heterodimerization of Kae1 with Pcc1 in KEOPS. The partial complementation of telomere maintenance by Qri7 hints that KEOPS has evolved novel functions in higher organisms.


TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage.

  • Tristan Frum‎ et al.
  • Development (Cambridge, England)‎
  • 2019‎

In mice, pluripotent cells are thought to derive from cells buried inside the embryo around the 16-cell stage. Sox2 is the only pluripotency gene known to be expressed specifically within inside cells at this stage. To understand how pluripotency is established, we therefore investigated the mechanisms regulating the initial activation of Sox2 expression. Surprisingly, Sox2 expression initiated normally in the absence of both Nanog and Oct4 (Pou5f1), highlighting differences between embryo and stem cell models of pluripotency. However, we observed precocious ectopic expression of Sox2 prior to the 16-cell stage in the absence of Yap1, Wwtr1 and Tead4 Interestingly, the repression of premature Sox2 expression was sensitive to LATS kinase activity, even though LATS proteins normally do not limit activity of TEAD4, YAP1 and WWTR1 during these early stages. Finally, we present evidence for direct transcriptional repression of Sox2 by YAP1, WWTR1 and TEAD4. Taken together, our observations reveal that, while embryos are initially competent to express Sox2 as early as the four-cell stage, transcriptional repression prevents the premature expression of Sox2, thereby restricting the pluripotency program to the stage when inside cells are first created.


Oligomerization-primed coiled-coil domain interaction with Ubc13 confers processivity to TRAF6 ubiquitin ligase activity.

  • Lin Hu‎ et al.
  • Nature communications‎
  • 2017‎

Ubiquitin ligase TRAF6, together with ubiquitin-conjugating enzyme Ubc13/Uev1, catalyzes processive assembly of unanchored K63-linked polyubiquitin chains for TAK1 activation in the IL-1R/TLR pathways. However, what domain and how it functions to enable TRAF6's processivity are largely uncharacterized. Here, we find TRAF6 coiled-coil (CC) domain is crucial to enable its processivity. The CC domain mediates TRAF6 oligomerization to ensure efficient long polyubiquitin chain assembly. Mutating or deleting the CC domain impairs TRAF6 oligomerization and processive polyubiquitin chain assembly. Fusion of the CC domain to the E3 ubiquitin ligase CHIP/STUB1 renders the latter capable of NF-κB activation. Moreover, the CC domain, after oligomerization, interacts with Ubc13/Ub~Ubc13, which further contributes to TRAF6 processivity. Point mutations within the CC domain that weaken TRAF6 interaction with Ubc13/Ub~Ubc13 diminish TRAF6 processivity. Our results reveal that the CC oligomerization primes its interaction with Ubc13/Ub~Ubc13 to confer processivity to TRAF6 ubiquitin ligase activity.Ubiquitin ligase TRAF6 catalyzes assembly of free polyubiquitin chains for TAK1 activation in the IL-1R/TLR pathways, but the mechanism underlying its processivity is unclear. Here, the authors show that TRAF6 coiled-coil oligomerization domain primes its interaction with Ubc13/Ub~Ubc13 to confer processivity.


High-Resolution Dissection of Chemical Reprogramming from Mouse Embryonic Fibroblasts into Fibrocartilaginous Cells.

  • Yishan Chen‎ et al.
  • Stem cell reports‎
  • 2020‎

Articular cartilage injury and degeneration causing pain and loss of quality-of-life has become a serious problem for increasingly aged populations. Given the poor self-renewal of adult human chondrocytes, alternative functional cell sources are needed. Direct reprogramming by small molecules potentially offers an oncogene-free and cost-effective approach to generate chondrocytes, but has yet to be investigated. Here, we directly reprogrammed mouse embryonic fibroblasts into PRG4+ chondrocytes using a 3D system with a chemical cocktail, VCRTc (valproic acid, CHIR98014, Repsox, TTNPB, and celecoxib). Using single-cell transcriptomics, we revealed the inhibition of fibroblast features and activation of chondrogenesis pathways in early reprograming, and the intermediate cellular process resembling cartilage development. The in vivo implantation of chemical-induced chondrocytes at defective articular surfaces promoted defect healing and rescued 63.4% of mechanical function loss. Our approach directly converts fibroblasts into functional cartilaginous cells, and also provides insights into potential pharmacological strategies for future cartilage regeneration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: