Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Cone degeneration is triggered by the absence of USH1 proteins but prevented by antioxidant treatments.

  • Alix Trouillet‎ et al.
  • Scientific reports‎
  • 2018‎

Usher syndrome type 1 (USH1) is a major cause of inherited deafness and blindness in humans. The eye disorder is often referred to as retinitis pigmentosa, which is characterized by a secondary cone degeneration following the rod loss. The development of treatments to prevent retinal degeneration has been hampered by the lack of clear evidence for retinal degeneration in mutant mice deficient for the Ush1 genes, which instead faithfully mimic the hearing deficit. We show that, under normal housing conditions, Ush1g-/- and Ush1c-/- albino mice have dysfunctional cone photoreceptors whereas pigmented knockout animals have normal photoreceptors. The key involvement of oxidative stress in photoreceptor apoptosis and the ensued retinal gliosis were further confirmed by their prevention when the mutant mice are reared under darkness and/or supplemented with antioxidants. The primary degeneration of cone photoreceptors contrasts with the typical forms of retinitis pigmentosa. Altogether, we propose that oxidative stress probably accounts for the high clinical heterogeneity among USH1 siblings, which also unveils potential targets for blindness prevention.


Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice.

  • Iman Sahly‎ et al.
  • The Journal of cell biology‎
  • 2012‎

The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins-myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans-do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner-outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients.


The SNARE protein SNAP-25 is required for normal exocytosis at auditory hair cell ribbon synapses.

  • Charlotte Calvet‎ et al.
  • iScience‎
  • 2022‎

Hearing depends on fast and sustained calcium-dependent synaptic vesicle fusion at the ribbon synapses of cochlear inner hair cells (IHCs). The implication of the canonical neuronal SNARE complex in this exocytotic process has so far remained controversial. We investigated the role of SNAP-25, a key component of this complex, in hearing, by generating and analyzing a conditional knockout mouse model allowing a targeted postnatal deletion of Snap-25 in IHCs. Mice subjected to IHC Snap-25 inactivation after hearing onset developed severe to profound deafness because of defective IHC exocytosis followed by ribbon degeneration and IHC loss. Viral transfer of Snap-25 in these mutant mice rescued their hearing function by restoring IHC exocytosis and preventing synapses and hair cells from degeneration. These results demonstrate that SNAP-25 is essential for normal hearing function, most likely by ensuring IHC exocytosis and ribbon synapse maintenance.


Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment.

  • Cataldo Schietroma‎ et al.
  • The Journal of cell biology‎
  • 2017‎

Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15-containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal.


Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy.

  • Christina Zeitz‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: