Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36 papers

Identification of changes in dendritic cell subsets that correlate with disease severity in dengue infection.

  • Sakaorat Lertjuthaporn‎ et al.
  • PloS one‎
  • 2018‎

Dengue virus (DENV) is the most prevalent arthropod-borne viral disease in humans. DENV causes a spectrum of illness ranging from mild to potentially severe complications. Dendritic cells (DCs) play a critical role in initiating and regulating highly effective antiviral immune response that include linking innate and adaptive immune responses. This study was conducted to comparatively characterize in detail the relative proportion, phenotypic changes, and maturation profile of subsets of both myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in children with dengue fever (DF), dengue hemorrhagic fever (DHF) and for purposes of control healthy individuals. The mDCs (Lin-CD11c+CD123lo), the pDCs (Lin-CD11c-CD123+) and the double negative (DN) subset (Lin-/HLA-DR+/CD11c-CD123-) were analyzed by polychromatic flow cytometry. The data were first analyzed on blood samples collected from DENV-infected patients at various times post-infection. Results showed that the relative proportion of mDCs were significantly decreased which was associated with an increase in disease severity in samples from DENV-infected patients. While there was no significant difference in the relative proportion of pDCs between healthy and DENV-infected patients, there was a marked increase in the DN subset. Analysis of the kinetics of changes of pDCs showed that there was an increase but only during the early febrile phase. Additionally, samples from patients during acute disease showed marked decreases in the relative proportion of CD141+ and CD16+ mDC subsets that were the major mDC subsets in healthy individuals. In addition, there was a significant decrease in the level of CD33-expressing mDCs in DENV patients. While the pDCs showed an up-regulation of maturation profile during acute DENV infection, the mDCs showed an alteration of maturation status. This study suggests that different relative proportion and phenotypic changes as well as alteration of maturation profile of DC subsets may play a critical role in the dengue pathogenesis and disease outcome.


Decreased nitrite levels in erythrocytes of children with β-thalassemia/hemoglobin E.

  • Thitiwat Suvachananonda‎ et al.
  • Nitric oxide : biology and chemistry‎
  • 2013‎

Nitrite anion is bioactive nitric oxide (NO) species circulating in blood, and represents the NO bioavailability and endothelial function. In this study, we aimed to investigate the nitrite levels and the correlation with hemolysis and severity in β-thalassemia/hemoglobin E (β-thal/HbE). 38 Children (12.0±1.9 years of age) with a diagnosis of mild, moderate and severe β-thalassemia were enrolled in the study. The blood nitrite levels and potential plasma NO consumption were measured by the chemiluminescence method. The nitrite levels in whole blood and erythrocytes of the severe thalassemia subjects were lower than those of the control subjects. At day 7 after transfusion of packed erythrocytes, the nitrite levels in erythrocytes increased. The plasma hemoglobin and NO consumption increased in the severe thalassemia subjects. The nitrite levels in erythrocytes inversely correlated with plasma hemoglobin, lactate dehydrogenase activity, potential NO consumption, and lipid peroxidation. Our studies demonstrate the decreased NO bioavailability in thalassemia, which could result from endothelial dysfunction, the increased potential NO consumption in plasma by cell-free hemoglobin and oxidative stress.


Asthma and atopic dermatitis are associated with increased risk of clinical Plasmodium falciparum malaria.

  • Magali Herrant‎ et al.
  • BMJ open‎
  • 2013‎

To assess the impact of atopy and allergy on the risk of clinical malaria.


Factor VII deficiency: Unveiling the cellular and molecular mechanisms underlying three model alterations of the enzyme catalytic domain.

  • Maria Eugenia Chollet‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2018‎

Activated factor (F) VII is a vitamin K-dependent glycoprotein that initiates blood coagulation upon interaction with tissue factor. FVII deficiency is the most common of the rare congenital bleeding disorders. While the mutational pattern has been extensively characterized, the pathogenic molecular mechanisms of mutations, particularly at the intracellular level, have been poorly defined. Here, we aimed at elucidating the mechanisms underlying altered FVII biosynthesis in the presence of three mutation types in the catalytic domain: a missense change, a microdeletion and a frameshift/elongation, associated with severe or moderate to severe phenotypes. Using CHO-K1 cells transiently transfected with expression vectors containing the wild-type FVII cDNA (FVIIwt) or harboring the p.I289del, p.G420V or p.A354V-p.P464Hfs mutations, we found that the secretion of the FVII mutants was severely decreased compared to FVIIwt. The synthesis rate of the mutants was slower than the FVIIwt and delayed, and no degradation of the FVII mutants by proteasomes, lysosomes or cysteine proteases was observed. Confocal immunofluorescence microscopy studies showed that FVII variants were localized into the endoplasmic reticulum (ER) but were not detectable within the Golgi apparatus. These findings suggested that a common pathogenic mechanism, possibly a defective folding of the mutant proteins, was triggered by the FVII mutations. The misfolded state led to impaired trafficking of these proteins causing ER retention, which would explain the low to very low FVII plasma levels observed in patients carrying these mutations.


miR-424-5p reduces ribosomal RNA and protein synthesis in muscle wasting.

  • Martin Connolly‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2018‎

A loss of muscle mass occurs as a consequence of a range of chronic and acute diseases as well as in older age. This wasting results from an imbalance of protein synthesis and degradation with a reduction in synthesis and resistance to anabolic stimulation often reported features. Ribosomes are required for protein synthesis, so changes in the control of ribosome synthesis are potential contributors to muscle wasting. MicroRNAs (miRNAs) are known regulators of muscle phenotype and have been shown to modulate components of the protein synthetic pathway. One miRNA that is predicted to target a number of components of protein synthetic pathway is miR-424-5p, which is elevated in the quadriceps of patients with chronic obstructive pulmonary disease (COPD).


PROC Promoter Single Nucleotide Polymorphisms Associated With Low Protein C Activity But Not Increased Risk of Thromboembolism in Pediatric Population.

  • Natsumon Udomkittivorakul‎ et al.
  • Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis‎
  • 2020‎

Protein C (PC) deficiency, caused by mutations of the PROC gene, is a common inherited risk factor of thromboembolism (TE) among Thai people. This study aimed to investigate the association of 3 single nucleotide polymorphisms (SNPs; -1654 C/T, -1641 A/G, -1461A/T) at the PROC promoter region with PC activity and the risk of developing TE. A total of 216 patient s with TE, diagnosed at aged 0 to 20 years, and 102 healthy adults were enrolled. The SNPs were identified by Sanger sequencing. Protein C activity was measured using an automated functional clotting assay. Linear and logistic regression analyses were used to determine the association of SNPs with PC activity and the risk of TE. Patients and controls with homozygous TAA (119.6% ± 26.1%) and CGT haplotypes (102.7% ± 22.6%) had significantly lower PC activity than those with a homozygous CAA haplotype (140.4% ± 44.9%); P = .027 and .016, respectively. However, none of these haplotypes increased the risk of TE. This study suggested that the 3 PROC promoter SNPs were shown to be associated with lower PC activity but did not increase the risk of TE.


Germinated brown rice protects against glutamate toxicity in HT22 hippocampal neurons through the jnk-mediated apoptotic pathway via the GABAA receptor.

  • Sukrit Promtang‎ et al.
  • IBRO neuroscience reports‎
  • 2023‎

The anti-apoptosis effect of germinated brown rice (GBR) focusing on differentiated HT22 cells results in improved nutritional values after the germination process of GBR which contains total phenolic compounds and γ-aminobutyric acid (GABA). Cell death induced by 5 mM glutamate was investigated for 24 h to determine whether GBR mediates cell death through GABA receptors by using antagonists. The results showed that GBR (100 µg/ml) suppressed glutamate-induced cytotoxicity and caused arrest at the G1/S phase of the cell cycle in differentiated HT22 cells. Furthermore, GBR significantly decreased the expression level of c-Jun, while its active form, p-c-Jun, is the downstream product of the JNK-mediated apoptotic pathway and causes subsequent cell death. In addition, bicuculline (12.5 nM), a GABAA antagonist, could eliminate GBR effects, but phaclofen (1 mM), a GABAB antagonist, could not. Surprisingly, GBR exhibited a better neuroprotective effect than a pure commercial GABA compound (0.115 µM). These results indicated that GBR possessed high anti-apoptotic activity and inhibited cell death in differentiated HT22 cells by perturbing re-entry of the cell cycle and apoptosis via the GABAA receptor. Hence, GBR could be further used as a valuable nutritional compound to prevent apoptosis-induced neurodegenerative diseases.


Coagulant activity of recombinant human factor VII produced by lentiviral human F7 gene transfer in immortalized hepatocyte-like cell line.

  • Sarai Pongjantarasatian‎ et al.
  • PloS one‎
  • 2019‎

Human mesenchymal stem cells (hMSCs) have the potential to differentiate into hepatocyte-like cells, indicating that these cells may be the new target cell of interest to produce biopharmaceuticals. Our group recently established a hMSC-derived immortalized hepatocyte-like cell line (imHC) that demonstrates several liver-specific phenotypes. However, the ability of imHC to produce coagulation factors has not been characterized. Here, we examined the potential for imHC as a source of coagulation protein production by investigating the ability of imHC to produce human factor VII (FVII) using a lentiviral transduction system. Our results showed that imHC secreted a low amount of FVII (~22 ng/mL) into culture supernatant. Moreover, FVII from the transduced imHC (0.11 ± 0.005 IU/mL) demonstrated a similar coagulant activity compared with FVII from transduced HEK293T cells (0.12 ± 0.004 IU/mL) as determined by chromogenic assay. We demonstrate for the first time, to the best of our knowledge, that imHC produced FVII, albeit at a low level, indicating the unique characteristic of hepatocytes. Our study suggests the possibility of using imHC for the production of coagulation proteins.


Mutations of TFPI-binding exosites on factor VII cause bleeding phenotypes in factor VII deficiency.

  • Karnsasin Seanoon‎ et al.
  • Blood advances‎
  • 2022‎

Tissue factor (TF) pathway inhibitor (TFPI) is a Kunitz-type anticoagulation protein that inhibits activated factor VII (FVIIa)/TF complex. Incidentally, many different F7 gene variants, including TFPI-binding exosite mutations, have been reported in patients with congenital FVII deficiency and clinical bleeding variabilities. Here, TFPI-binding exosites (R147 and K192) on FVII zymogen were selectively disrupted to understand their roles in the pathogenesis of bleeding phenotypes. Expression of recombinant FVII variants (R147A, K192A, and R147A/K192A) demonstrated markedly reduced secretion of FVII owing to intracellular retention in the endoplasmic reticulum, as demonstrated by upregulation of the unfolded protein response genes in all FVII variants. FVII variants showed a similar FVII activation pattern and FVIIa amidolytic activity than FVII wild-type (WT). In contrast to FVII activation, R147A and K192A showed a 90% reduction in FX activation relative to WT, whereas the R147A/K192A variant demonstrated a 99% decrease in FX activation. The clotting time was markedly prolonged with R147A and K192A than WT, and no FVII coagulant activity was detected in R147A/K192A. In addition, the thrombin generation assay revealed a significant prolongation of lag time in all FVII variants. Our study explains how mutations of TFPI-binding exosites of FVII can lead to bleeding phenotypes in individuals carrying these aberrancies.


Site-directed mutagenesis of tissue factor pathway inhibitor-binding exosite D60A on factor VII results in a new factor VII variant with lower coagulant activity.

  • Karnsasin Seanoon‎ et al.
  • Research and practice in thrombosis and haemostasis‎
  • 2024‎

Recombinant factor (F)VIIa (rFVIIa) has been approved by the US Food and Drug Administration for the treatment of hemophilia A and B with inhibitors and congenital FVII deficiency. Moreover, the investigational uses of rFVIIa are becoming of interest since it can be used to treat various clinical bleeding conditions. However, there is evidence showing that rFVIIa is a potent procoagulant agent that potentially leads to an increased risk of thrombotic complications.


High number of previous Plasmodium falciparum clinical episodes increases risk of future episodes in a sub-group of individuals.

  • Cheikh Loucoubar‎ et al.
  • PloS one‎
  • 2013‎

There exists great disparity in the number of clinical P. falciparum episodes among children of the same age and living in similar conditions. The epidemiological determinants of such disparity are unclear. We used a data-mining approach to explore a nineteen-year longitudinal malaria cohort study dataset from Senegal and identify variables associated with increased risk of malaria episodes. These were then verified using classical statistics and replicated in a second cohort. In addition to age, we identified a novel high-risk group of children in whom the history of P. falciparum clinical episodes greatly increased risk of further episodes. Age and a high number of previous falciparum clinical episodes not only play major roles in explaining the risk of P. falciparum episodes but also are risk factors for different groups of people. Combined, they explain the majority of falciparum clinical attacks. Contrary to what is widely believed, clinical immunity to P. falciparum does not de facto occur following many P. falciparum clinical episodes. There exist a sub-group of children who suffer repeated clinical episodes. In addition to posing an important challenge for population stratification during clinical trials, this sub-group disproportionally contributes to the disease burden and may necessitate specific prevention and control measures.


Structure in the variability of the basic reproductive number (R0) for Zika epidemics in the Pacific islands.

  • Clara Champagne‎ et al.
  • eLife‎
  • 2016‎

Before the outbreak that reached the Americas in 2015, Zika virus (ZIKV) circulated in Asia and the Pacific: these past epidemics can be highly informative on the key parameters driving virus transmission, such as the basic reproduction number (R0). We compare two compartmental models with different mosquito representations, using surveillance and seroprevalence data for several ZIKV outbreaks in Pacific islands (Yap, Micronesia 2007, Tahiti and Moorea, French Polynesia 2013-2014, New Caledonia 2014). Models are estimated in a stochastic framework with recent Bayesian techniques. R0 for the Pacific ZIKV epidemics is estimated between 1.5 and 4.1, the smallest islands displaying higher and more variable values. This relatively low range of R0 suggests that intervention strategies developed for other flaviviruses should enable as, if not more effective control of ZIKV. Our study also highlights the importance of seroprevalence data for precise quantitative analysis of pathogen propagation, to design prevention and control strategies.


An open challenge to advance probabilistic forecasting for dengue epidemics.

  • Michael A Johansson‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico. Forecast skill was highly variable across teams and targets. While numerous forecasts showed high skill for midseason situational awareness, early season skill was low, and skill was generally lowest for high incidence seasons, those for which forecasts would be most valuable. A comparison of modeling approaches revealed that average forecast skill was lower for models including biologically meaningful data and mechanisms and that both multimodel and multiteam ensemble forecasts consistently outperformed individual model forecasts. Leveraging these insights, data, and the forecasting framework will be critical to improve forecast skill and the application of forecasts in real time for epidemic preparedness and response. Moreover, key components of this project-integration with public health needs, a common forecasting framework, shared and standardized data, and open participation-can help advance infectious disease forecasting beyond dengue.


Scaling Up of Steric Exclusion Membrane Chromatography for Lentiviral Vector Purification.

  • Jennifer Julia Labisch‎ et al.
  • Membranes‎
  • 2023‎

Lentiviral vectors (LVs) are widely used in clinical trials of gene and cell therapy. Low LV stability incentivizes constant development and the improvement of gentle process steps. Steric exclusion chromatography (SXC) has gained interest in the field of virus purification but scaling up has not yet been addressed. In this study, the scaling up of lentiviral vector purification by SXC with membrane modules was approached. Visualization of the LVs captured on the membrane during SXC showed predominant usage of the upper membrane layer. Furthermore, testing of different housing geometries showed a strong influence on the uniform usage of the membrane. The main use of the first membrane layer places a completely new requirement on the scaling of the process and the membrane modules. When transferring the SXC process to smaller or larger membrane modules, it became apparent that scaling of the flow rate is a critical factor that must be related to the membrane area of the first layer. Performing SXC at different scales demonstrated that a certain critical minimum surface area-dependent flow rate is necessary to achieve reproducible LV recoveries. With the presented scaling approach, we were able to purify 980 mL LVs with a recovery of 68%.


Tocilizumab-treated convalescent COVID-19 patients retain the cross-neutralization potential against SARS-CoV-2 variants.

  • Camille Chauvin‎ et al.
  • iScience‎
  • 2023‎

Although tocilizumab treatment in severe and critical coronavirus disease 2019 (COVID-19) patients has proven its efficacy at the clinical level, there is little evidence supporting the effect of short-term use of interleukin-6 receptor blocking therapy on the B cell sub-populations and the cross-neutralization of SARS-CoV-2 variants in convalescent COVID-19 patients. We performed immunological profiling of 69 tocilizumab-treated and non-treated convalescent COVID-19 patients in total. We observed that SARS-CoV-2-specific IgG1 titers depended on disease severity but not on tocilizumab treatment. The plasma of both treated and non-treated patients infected with the ancestral variant exhibit strong neutralizing activity against the ancestral virus and the Alpha, Beta, and Delta variants of SARS-CoV-2, whereas the Gamma and Omicron viruses were less sensitive to seroneutralization. Overall, we observed that, despite the clinical benefits of short-term tocilizumab therapy in modifying the cytokine storm associated with COVID-19 infections, there were no modifications in the robustness of B cell and IgG responses to Spike antigens.


Joint ancestry and association test indicate two distinct pathogenic pathways involved in classical dengue fever and dengue shock syndrome.

  • Marisa Oliveira‎ et al.
  • PLoS neglected tropical diseases‎
  • 2018‎

Ethnic diversity has been long considered as one of the factors explaining why the severe forms of dengue are more prevalent in Southeast Asia than anywhere else. Here we take advantage of the admixed profile of Southeast Asians to perform coupled association-admixture analyses in Thai cohorts. For dengue shock syndrome (DSS), the significant haplotypes are located in genes coding for phospholipase C members (PLCB4 added to previously reported PLCE1), related to inflammation of blood vessels. For dengue fever (DF), we found evidence of significant association with CHST10, AHRR, PPP2R5E and GRIP1 genes, which participate in the xenobiotic metabolism signaling pathway. We conducted functional analyses for PPP2R5E, revealing by immunofluorescence imaging that the coded protein co-localizes with both DENV1 and DENV2 NS5 proteins. Interestingly, only DENV2-NS5 migrated to the nucleus, and a deletion of the predicted top-linking motif in NS5 abolished the nuclear transfer. These observations support the existence of differences between serotypes in their cellular dynamics, which may contribute to differential infection outcome risk. The contribution of the identified genes to the genetic risk render Southeast and Northeast Asian populations more susceptible to both phenotypes, while African populations are best protected against DSS and intermediately protected against DF, and Europeans the best protected against DF but the most susceptible against DSS.


The genetic control of immunity to Plasmodium infection.

  • Audrey V Grant‎ et al.
  • BMC immunology‎
  • 2015‎

Malaria remains a major worldwide public health problem with ~207 million cases and ~627,000 deaths per year, mainly affecting children under five years of age in Africa. Recent efforts at elaborating a genetic architecture of malaria have focused on severe malaria, leading to the identification of two new genes and confirmation of previously known variants in HBB, ABO and G6PD, by exploring the whole human genome in genome-wide association (GWA) studies. Molecular pathways controlling phenotypes representing effectiveness of host immunity, notably parasitemia and IgG levels, are of particular interest given the current lack of an efficacious vaccine and the need for new treatment options.


Heritability of P. falciparum and P. vivax malaria in a Karen population in Thailand.

  • Waraphon Phimpraphi‎ et al.
  • PloS one‎
  • 2008‎

The majority of studies concerning malaria host genetics have focused on individual genes that confer protection against rather than susceptibility to malaria. Establishing the relative impact of genetic versus non-genetic factors on malaria infection and disease is essential to focus effort on key determinant factors. This relative contribution has rarely been evaluated for Plasmodium falciparum and almost never for Plasmodium vivax. We conducted a longitudinal cohort study in a Karen population of 3,484 individuals in a region of mesoendemic malaria, Thailand from 1998 to 2005. The number of P. falciparum and P. vivax clinical cases and the parasite density per person were determined. Statistical analyses were performed to account for the influence of environmental factors and the genetic heritability of the phenotypes was calculated using the pedigree-based variance components model. The genetic contribution to the number of clinical episodes resulting from P. falciparum and P. vivax were 10% and 19% respectively. There was also moderate genetic contribution to the maximum and overall parasite trophozoite density phenotypes for both P. falciparum (16%&16%) and P. vivax (15%&13%). These values, for P. falciparum, were similar to those previously observed in a region of much higher transmission intensity in Senegal, West Africa. Although environmental factors play an important role in acquiring an infection, genetics plays a determinant role in the outcome of an infection with either malaria parasite species prior to the development of immunity.


The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density.

  • Hannah C Slater‎ et al.
  • Nature communications‎
  • 2019‎

Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings.


B cell subset alteration and the expression of tissue homing molecules in dengue infected patients.

  • Kovit Pattanapanyasat‎ et al.
  • Journal of biomedical science‎
  • 2018‎

B cells play an essential role during dengue viral infection. While a major expansion of antibody secreting cells (ASCs) was observed, the importance of these increased frequencies of ASCs remains unclear. The alteration of B cell subsets may result from the expression of tissue specific homing molecules leading to their mobilization and distribution to different target organs during acute dengue viral infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: