Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 62 papers

GFP-specific CD8 T cells enable targeted cell depletion and visualization of T-cell interactions.

  • Judith Agudo‎ et al.
  • Nature biotechnology‎
  • 2015‎

There are numerous cell types with scarcely understood functions, whose interactions with the immune system are not well characterized. To facilitate their study, we generated a mouse bearing enhanced green fluorescent protein (EGFP)-specific CD8+ T cells. Transfer of the T cells into EGFP reporter animals can be used to kill EGFP-expressing cells, allowing selective depletion of desired cell types, or to interrogate T-cell interactions with specific populations. Using this system, we eliminate a rare EGFP-expressing cell type in the heart and demonstrate its role in cardiac function. We also show that naive T cells are recruited into the mouse brain by antigen-expressing microglia, providing evidence of an immune surveillance pathway in the central nervous system. The just EGFP death-inducing (Jedi) T cells enable visualization of a T-cell antigen. They also make it possible to utilize hundreds of existing EGFP-expressing mice, tumors, pathogens and other tools, to study T-cell interactions with many different cell types, to model disease states and to determine the functions of poorly characterized cell populations.


FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures.

  • Ryotaro Bouchi‎ et al.
  • Nature communications‎
  • 2014‎

Generation of surrogate sources of insulin-producing β-cells remains a goal of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into β-like-cells through endodermal progenitors, we have shown that gut endocrine progenitor cells of mice can be differentiated into glucose-responsive, insulin-producing cells by ablation of transcription factor Foxo1. Here we show that FOXO1 is present in human gut endocrine progenitor and serotonin-producing cells. Using gut organoids derived from human iPS cells, we show that FOXO1 inhibition using a dominant-negative mutant or lentivirus-encoded small hairpin RNA promotes generation of insulin-positive cells that express all markers of mature pancreatic β-cells, release C-peptide in response to secretagogues and survive in vivo following transplantation into mice. The findings raise the possibility of using gut-targeted FOXO1 inhibition or gut organoids as a source of insulin-producing cells to treat human diabetes.


Genetic variation in human DNA replication timing.

  • Amnon Koren‎ et al.
  • Cell‎
  • 2014‎

Genomic DNA replicates in a choreographed temporal order that impacts the distribution of mutations along the genome. We show here that DNA replication timing is shaped by genetic polymorphisms that act in cis upon megabase-scale DNA segments. In genome sequences from proliferating cells, read depth along chromosomes reflected DNA replication activity in those cells. We used this relationship to analyze variation in replication timing among 161 individuals sequenced by the 1000 Genomes Project. Genome-wide association of replication timing with genetic variation identified 16 loci at which inherited alleles associate with replication timing. We call these "replication timing quantitative trait loci" (rtQTLs). rtQTLs involved the differential use of replication origins, exhibited allele-specific effects on replication timing, and associated with gene expression variation at megabase scales. Our results show replication timing to be shaped by genetic polymorphism and identify a means by which inherited polymorphism regulates the mutability of nearby sequences.


Genome-wide patterns and properties of de novo mutations in humans.

  • Laurent C Francioli‎ et al.
  • Nature genetics‎
  • 2015‎

Mutations create variation in the population, fuel evolution and cause genetic diseases. Current knowledge about de novo mutations is incomplete and mostly indirect. Here we analyze 11,020 de novo mutations from the whole genomes of 250 families. We show that de novo mutations in the offspring of older fathers are not only more numerous but also occur more frequently in early-replicating, genic regions. Functional regions exhibit higher mutation rates due to CpG dinucleotides and show signatures of transcription-coupled repair, whereas mutation clusters with a unique signature point to a new mutational mechanism. Mutation and recombination rates independently associate with nucleotide diversity, and regional variation in human-chimpanzee divergence is only partly explained by heterogeneity in mutation rate. Finally, we provide a genome-wide mutation rate map for medical and population genetics applications. Our results provide new insights and refine long-standing hypotheses about human mutagenesis.


β Cell Replacement after Gene Editing of a Neonatal Diabetes-Causing Mutation at the Insulin Locus.

  • Shuangyu Ma‎ et al.
  • Stem cell reports‎
  • 2018‎

Permanent neonatal diabetes mellitus (PNDM) can be caused by insulin mutations. We generated induced pluripotent stem cells from fibroblasts of a patient with PNDM and undetectable insulin at birth due to a homozygous mutation in the translation start site of the insulin gene. Differentiation of mutant cells resulted in insulin-negative endocrine stem cells expressing MAFA, NKX6.1, and chromogranin A. Correction of the mutation in stem cells and differentiation to pancreatic endocrine cells restored insulin production and insulin secretion to levels comparable to those of wild-type cells. Grafting of corrected cells into mice, followed by ablating mouse β cells using streptozotocin, resulted in normal glucose homeostasis, including at night, and the stem cell-derived grafts adapted insulin secretion to metabolic changes. Our study provides proof of principle for the generation of genetically corrected cells autologous to a patient with non-autoimmune insulin-dependent diabetes. These cases should be readily amenable to autologous cell therapy.


Random replication of the inactive X chromosome.

  • Amnon Koren‎ et al.
  • Genome research‎
  • 2014‎

In eukaryotic cells, genomic DNA replicates in a defined temporal order. The inactive X chromosome (Xi), the most extensive instance of facultative heterochromatin in mammals, replicates later than the active X chromosome (Xa), but the replication dynamics of inactive chromatin are not known. By profiling human DNA replication in an allele-specific, chromosomally phased manner, we determined for the first time the replication timing along the active and inactive chromosomes (Xa and Xi) separately. Replication of the Xi was different from that of the Xa, varied among individuals, and resembled a random, unstructured process. The Xi replicated rapidly and at a time largely separable from that of the euchromatic genome. Late-replicating, transcriptionally inactive regions on the autosomes also replicated in an unstructured manner, similar to the Xi. We conclude that DNA replication follows two strategies: slow, ordered replication associated with transcriptional activity, and rapid, random replication of silent chromatin. The two strategies coexist in the same cell, yet are segregated in space and time.


β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome.

  • Linshan Shang‎ et al.
  • Diabetes‎
  • 2014‎

Wolfram syndrome is an autosomal recessive disorder caused by mutations in WFS1 and is characterized by insulin-dependent diabetes mellitus, optic atrophy, and deafness. To investigate the cause of β-cell failure, we used induced pluripotent stem cells to create insulin-producing cells from individuals with Wolfram syndrome. WFS1-deficient β-cells showed increased levels of endoplasmic reticulum (ER) stress molecules and decreased insulin content. Upon exposure to experimental ER stress, Wolfram β-cells showed impaired insulin processing and failed to increase insulin secretion in response to glucose and other secretagogues. Importantly, 4-phenyl butyric acid, a chemical protein folding and trafficking chaperone, restored normal insulin synthesis and the ability to upregulate insulin secretion. These studies show that ER stress plays a central role in β-cell failure in Wolfram syndrome and indicate that chemical chaperones might have therapeutic relevance under conditions of ER stress in Wolfram syndrome and other forms of diabetes.


Origin replication complex binding, nucleosome depletion patterns, and a primary sequence motif can predict origins of replication in a genome with epigenetic centromeres.

  • Hung-Ji Tsai‎ et al.
  • mBio‎
  • 2014‎

Origins of DNA replication are key genetic elements, yet their identification remains elusive in most organisms. In previous work, we found that centromeres contain origins of replication (ORIs) that are determined epigenetically in the pathogenic yeast Candida albicans. In this study, we used origin recognition complex (ORC) binding and nucleosome occupancy patterns in Saccharomyces cerevisiae and Kluyveromyces lactis to train a machine learning algorithm to predict the position of active arm (noncentromeric) origins in the C. albicans genome. The model identified bona fide active origins as determined by the presence of replication intermediates on nondenaturing two-dimensional (2D) gels. Importantly, these origins function at their native chromosomal loci and also as autonomously replicating sequences (ARSs) on a linear plasmid. A "mini-ARS screen" identified at least one and often two ARS regions of ≥100 bp within each bona fide origin. Furthermore, a 15-bp AC-rich consensus motif was associated with the predicted origins and conferred autonomous replicating activity to the mini-ARSs. Thus, while centromeres and the origins associated with them are epigenetic, arm origins are dependent upon critical DNA features, such as a binding site for ORC and a propensity for nucleosome exclusion.


Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase.

  • Amnon Koren‎ et al.
  • PLoS genetics‎
  • 2010‎

Eukaryotic centromeres are maintained at specific chromosomal sites over many generations. In the budding yeast Saccharomyces cerevisiae, centromeres are genetic elements defined by a DNA sequence that is both necessary and sufficient for function; whereas, in most other eukaryotes, centromeres are maintained by poorly characterized epigenetic mechanisms in which DNA has a less definitive role. Here we use the pathogenic yeast Candida albicans as a model organism to study the DNA replication properties of centromeric DNA. By determining the genome-wide replication timing program of the C. albicans genome, we discovered that each centromere is associated with a replication origin that is the first to fire on its respective chromosome. Importantly, epigenetic formation of new ectopic centromeres (neocentromeres) was accompanied by shifts in replication timing, such that a neocentromere became the first to replicate and became associated with origin recognition complex (ORC) components. Furthermore, changing the level of the centromere-specific histone H3 isoform led to a concomitant change in levels of ORC association with centromere regions, further supporting the idea that centromere proteins determine origin activity. Finally, analysis of centromere-associated DNA revealed a replication-dependent sequence pattern characteristic of constitutively active replication origins. This strand-biased pattern is conserved, together with centromere position, among related strains and species, in a manner independent of primary DNA sequence. Thus, inheritance of centromere position is correlated with a constitutively active origin of replication that fires at a distinct early time. We suggest a model in which the distinct timing of DNA replication serves as an epigenetic mechanism for the inheritance of centromere position.


Reprogramming after chromosome transfer into mouse blastomeres.

  • Dieter Egli‎ et al.
  • Current biology : CB‎
  • 2009‎

It is well known that oocytes can reprogram differentiated cells, allowing animal cloning by nuclear transfer. We have recently shown that fertilized zygotes retain reprogramming activities, suggesting that such activities might also persist in cleavage-stage embryos. Here, we used chromosome transplantation techniques to investigate whether the blastomeres of two-cell-stage mouse embryos can reprogram more differentiated cells. When chromosomes from one of the two blastomeres were replaced with the chromosomes of an embryonic or CD4(+) T lymphocyte donor cell, we observed nuclear reprogramming and efficient contribution of the manipulated cell to the developing blastocyst. Embryos produced by this method could be used to derive stem cell lines and also developed to term, generating mosaic "cloned" animals. These results demonstrate that blastomeres retain reprogramming activities and support the notion that discarded human preimplantation embryos may be useful recipients for the production of genetically tailored human embryonic stem cell lines.


Replication timing analysis in polyploid cells reveals Rif1 uses multiple mechanisms to promote underreplication in Drosophila.

  • Souradip Das‎ et al.
  • Genetics‎
  • 2021‎

Regulation of DNA replication and copy number is necessary to promote genome stability and maintain cell and tissue function. DNA replication is regulated temporally in a process known as replication timing (RT). Rap1-interacting factor 1 (Rif1) is a key regulator of RT and has a critical function in copy number control in polyploid cells. Previously, we demonstrated that Rif1 functions with SUUR to inhibit replication fork progression and promote underreplication (UR) of specific genomic regions. How Rif1-dependent control of RT factors into its ability to promote UR is unknown. By applying a computational approach to measure RT in Drosophila polyploid cells, we show that SUUR and Rif1 have differential roles in controlling UR and RT. Our findings reveal that Rif1 acts to promote late replication, which is necessary for SUUR-dependent underreplication. Our work provides new insight into the process of UR and its links to RT.


Detection of base analogs incorporated during DNA replication by nanopore sequencing.

  • Daniela Georgieva‎ et al.
  • Nucleic acids research‎
  • 2020‎

DNA synthesis is a fundamental requirement for cell proliferation and DNA repair, but no single method can identify the location, direction and speed of replication forks with high resolution. Mammalian cells have the ability to incorporate thymidine analogs along with the natural A, T, G and C bases during DNA synthesis, which allows for labeling of replicating or repaired DNA. Here, we demonstrate the use of the Oxford Nanopore Technologies MinION to detect 11 different thymidine analogs including CldU, BrdU, IdU as well as EdU alone or coupled to Biotin and other bulky adducts in synthetic DNA templates. We also show that the large adduct Biotin can be distinguished from the smaller analog IdU, which opens the possibility of using analog combinations to identify the location and direction of DNA synthesis. Furthermore, we detect IdU label on single DNA molecules in the genome of mouse pluripotent stem cells and using CRISPR/Cas9-mediated enrichment, determine replication rates using newly synthesized DNA strands in human mitochondrial DNA. We conclude that this novel method, termed Replipore sequencing, has the potential for on target examination of DNA replication in a wide range of biological contexts.


Error-prone repair of stalled replication forks drives mutagenesis and loss of heterozygosity in haploinsufficient BRCA1 cells.

  • Madhura Deshpande‎ et al.
  • Molecular cell‎
  • 2022‎

Germline mutations in the BRCA genes are associated with a higher risk of carcinogenesis, which is linked to an increased mutation rate and loss of the second unaffected BRCA allele (loss of heterozygosity, LOH). However, the mechanisms triggering mutagenesis are not clearly understood. The BRCA genes contain high numbers of repetitive DNA sequences. We detected replication forks stalling, DNA breaks, and deletions at these sites in haploinsufficient BRCA cells, thus identifying the BRCA genes as fragile sites. Next, we found that stalled forks are repaired by error-prone pathways, such as microhomology-mediated break-induced replication (MMBIR) in haploinsufficient BRCA1 breast epithelial cells. We detected MMBIR mutations in BRCA1 tumor cells and noticed deletions-insertions (>50 bp) at the BRCA1 genes in BRCA1 patients. Altogether, these results suggest that under stress, error-prone repair of stalled forks is upregulated and induces mutations, including complex genomic rearrangements at the BRCA genes (LOH), in haploinsufficient BRCA1 cells.


Cell-type specificity of the human mutation landscape with respect to DNA replication dynamics.

  • Madison Caballero‎ et al.
  • Cell genomics‎
  • 2023‎

The patterns of genomic mutations are associated with various genomic features, most notably late replication timing, yet it remains contested which mutation types and signatures relate to DNA replication dynamics and to what extent. Here, we perform high-resolution comparisons of mutational landscapes between lymphoblastoid cell lines, chronic lymphocytic leukemia tumors, and three colon adenocarcinoma cell lines, including two with mismatch repair deficiency. Using cell-type-matched replication timing profiles, we demonstrate that mutation rates exhibit heterogeneous replication timing associations among cell types. This cell-type heterogeneity extends to the underlying mutational pathways, as mutational signatures show inconsistent replication timing bias between cell types. Moreover, replicative strand asymmetries exhibit similar cell-type specificity, albeit with different relationships to replication timing than mutation rates. Overall, we reveal an underappreciated complexity and cell-type specificity of mutational pathways and their relationship to replication timing.


Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice.

  • George Stratigopoulos‎ et al.
  • Cell metabolism‎
  • 2014‎

Common polymorphisms in the first intron of FTO are associated with increased body weight in adults. Previous studies have suggested that a CUX1-regulatory element within the implicated FTO region controls expression of FTO and the nearby ciliary gene, RPGRIP1L. Given the role of ciliary genes in energy homeostasis, we hypothesized that mice hypomorphic for Rpgrip1l would display increased adiposity. We find that Rpgrip1l⁺/⁻ mice are hyperphagic and fatter, and display diminished suppression of food intake in response to leptin administration. In the hypothalamus of Rpgrip1l⁺/⁻ mice, and in human fibroblasts with hypomorphic mutations in RPGRIP1L, the number of AcIII-positive cilia is diminished, accompanied by impaired convening of the leptin receptor to the vicinity of the cilium, and diminished pStat3 in response to leptin. These findings suggest that RPGRIP1L may be partly or exclusively responsible for the obesity susceptibility signal at the FTO locus.


Transgenic substitution with Greater Amberjack Seriola dumerili fish insulin 2 in NOD mice reduces beta cell immunogenicity.

  • Kylie S Foo‎ et al.
  • Scientific reports‎
  • 2019‎

Type I diabetes (T1D) is caused by immune-mediated destruction of pancreatic beta cells. This process is triggered, in part, by specific (aa 9-23) epitopes of the insulin Β chain. Previously, fish insulins were used clinically in patients allergic to bovine or porcine insulin. Fish and human insulin differ by two amino acids in the critical immunogenic region (aa 9-23) of the B chain. We hypothesized that β cells synthesizing fish insulin would be less immunogenic in a mouse model of T1D. Transgenic NOD mice in which Greater Amberjack fish (Seriola dumerili) insulin was substituted for the insulin 2 gene were generated (mouse Ins1-/- mouse Ins2-/- fish Ins2+/+). In these mice, pancreatic islets remained free of autoimmune attack. To determine whether such reduction in immunogenicity is sufficient to protect β cells from autoimmunity upon transplantation, we transplanted fish Ins2 transgenic (expressing solely Seriola dumerili Ins2), NOD, or B16:A-dKO islets under the kidney capsules of 5 weeks old female NOD wildtype mice. The B:Y16A Β chain substitution has been previously shown to be protective of T1D in NOD mice. NOD mice receiving Seriola dumerili transgenic islet transplants showed a significant (p = 0.004) prolongation of their euglycemic period (by 6 weeks; up to 18 weeks of age) compared to un-manipulated female NOD (diabetes onset at 12 weeks of age) and those receiving B16:A-dKO islet transplants (diabetes onset at 12 weeks of age). These data support the concept that specific amino acid sequence modifications can reduce insulin immunogenicity. Additionally, our study shows that alteration of a single epitope is not sufficient to halt an ongoing autoimmune response. Which, and how many, T cell epitopes are required and suffice to perpetuate autoimmunity is currently unknown. Such studies may be useful to achieve host tolerance to β cells by inactivating key immunogenic epitopes of stem cell-derived β cells intended for transplantation.


ILDR2 has a negligible role in hepatic steatosis.

  • Elizabeth J Millings‎ et al.
  • PloS one‎
  • 2018‎

We have previously reported that Ildr2 knockdown via adenovirally-delivered shRNA causes hepatic steatosis in mice. In the present study we investigated hepatic biochemical and anatomic phenotypes of Cre-mediated Ildr2 knock-out mice. Liver-specific Ildr2 knock-out mice were generated in C57BL/6J mice segregating for a floxed (exon 1) allele of Ildr2, using congenital and acute (10-13-week-old male mice) Cre expression. In addition, Ildr2 shRNA was administered to Ildr2 knock-out mice to test the effects of Ildr2 shRNA, per se, in the absence of Ildr2 expression. RNA sequencing was performed on livers of these knockdown and knockout mice. Congenital and acute liver-specific and hepatocyte-specific knockout mice did not develop hepatic steatosis. However, administration of Ildr2 shRNA to Ildr2 knock-out mice did cause hepatic steatosis, indicating that the Ildr2 shRNA had apparent "off-target" effects on gene(s) other than Ildr2. RNA sequencing and BLAST sequence alignment revealed Dgka as a candidate gene mediating these "off-target" effects. Ildr2 shRNA is 63% homologous to the Dgka gene, and Dgka expression decreased only in mice displaying hepatic steatosis. Dgka encodes diacylglycerol kinase (DGK) alpha, one of a family of DGKs which convert diacylglycerides to phosphatidic acid for second messenger signaling. Dgka knockdown mice would be expected to accumulate diacylglyceride, contributing to the observed hepatic steatosis. We conclude that ILDR2 plays a negligible role in hepatic steatosis. Rather, hepatic steatosis observed previously in Ildr2 knockdown mice was likely due to shRNA targeting of Dgka and/or other "off-target" genes. We propose that the gene candidates identified in this follow-up study may lead to identification of novel regulators of hepatic lipid metabolism.


Molecular signatures of aneuploidy-driven adaptive evolution.

  • Alaattin Kaya‎ et al.
  • Nature communications‎
  • 2020‎

Alteration of normal ploidy (aneuploidy) can have a number of opposing effects, such as unbalancing protein abundances and inhibiting cell growth but also accelerating genetic diversification and rapid adaptation. The interplay of these detrimental and beneficial effects remains puzzling. Here, to understand how cells develop tolerance to aneuploidy, we subject disomic (i.e. with an extra chromosome copy) strains of yeast to long-term experimental evolution under strong selection, by forcing disomy maintenance and daily population dilution. We characterize mutations, karyotype alterations and gene expression changes, and dissect the associated molecular strategies. Cells with different extra chromosomes accumulated mutations at distinct rates and displayed diverse adaptive events. They tended to evolve towards normal ploidy through chromosomal DNA loss and gene expression changes. We identify genes with recurrent mutations and altered expression in multiple lines, revealing a variant that improves growth under genotoxic stresses. These findings support rapid evolvability of disomic strains that can be used to characterize fitness effects of mutations under different stress conditions.


Derivation and characterization of the NYSCFe003-A human embryonic stem cell line.

  • Ana Sevilla‎ et al.
  • Stem cell research‎
  • 2017‎

The human embryonic stem cell line NYSCFe003-A was derived from a day 5 to day 6 blastocyst in feeder-free and antibiotic free conditions. The blastocyst was voluntarily donated for research as surplus after in vitro fertilization treatment following informed consent. The NYSCFe003-A line expresses all the pluripotency markers and has the potential to differentiate into all three germ layers in vitro. The line presents normal karyotype and is mycoplasma free.


The genetic architecture of DNA replication timing in human pluripotent stem cells.

  • Qiliang Ding‎ et al.
  • Nature communications‎
  • 2021‎

DNA replication follows a strict spatiotemporal program that intersects with chromatin structure but has a poorly understood genetic basis. To systematically identify genetic regulators of replication timing, we exploited inter-individual variation in human pluripotent stem cells from 349 individuals. We show that the human genome's replication program is broadly encoded in DNA and identify 1,617 cis-acting replication timing quantitative trait loci (rtQTLs) - sequence determinants of replication initiation. rtQTLs function individually, or in combinations of proximal and distal regulators, and are enriched at sites of histone H3 trimethylation of lysines 4, 9, and 36 together with histone hyperacetylation. H3 trimethylation marks are individually repressive yet synergistically associate with early replication. We identify pluripotency-related transcription factors and boundary elements as positive and negative regulators of replication timing, respectively. Taken together, human replication timing is controlled by a multi-layered mechanism with dozens of effectors working combinatorially and following principles analogous to transcription regulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: