Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Gains and losses of metabolic function inferred from a phylotranscriptomic analysis of algae.

  • Falicia Qi Yun Goh‎ et al.
  • Scientific reports‎
  • 2019‎

Hidden Markov models representing 167 protein sequence families were used to infer the presence or absence of homologs within the transcriptomes of 183 algal species/strains. Statistical analyses of the distribution of HMM hits across major clades of algae, or at branch points on the phylogenetic tree of 98 chlorophytes, confirmed and extended known cases of metabolic loss and gain, most notably the loss of the mevalonate pathway for terpenoid synthesis in green algae but not, as we show here, in the streptophyte algae. Evidence for novel events was found as well, most remarkably in the recurrent and coordinated gain or loss of enzymes for the glyoxylate shunt. We find, as well, a curious pattern of retention (or re-gain) of HMG-CoA synthase in chlorophytes that have otherwise lost the mevalonate pathway, suggesting a novel, co-opted function for this enzyme in select lineages. Finally, we find striking, phylogenetically linked distributions of coding sequences for three pathways that synthesize the major membrane lipid phosphatidylcholine, and a complementary phylogenetic distribution pattern for the non-phospholipid DGTS (diacyl-glyceryl-trimethylhomoserine). Mass spectrometric analysis of lipids from 25 species was used to validate the inference of DGTS synthesis from sequence data.


A Novel Human Systemic Lupus Erythematosus Model in Humanised Mice.

  • Merry Gunawan‎ et al.
  • Scientific reports‎
  • 2017‎

Mouse models have contributed to the bulk of knowledge on Systemic Lupus Erythematosus (SLE). Nevertheless, substantial differences exist between human and mouse immune system. We aimed to establish and characterise a SLE model mediated by human immune system. Injection of pristane into immunodeficient mice reconstituted with human immune system (humanised mice) recapitulated key SLE features, including: production of human anti-nuclear autoantibodies, lupus nephritis, and pulmonary serositis. There was a reduction in the number of human lymphocytes in peripheral blood, resembling lymphopenia in SLE patients. Concurrently, B cells and T cells were systemically hyperactivated, with a relative expansion of CD27+ and CD27-IgD- memory B cells, increased number of plasmablasts/plasma cells, and accumulation of effector memory T cells. There was also an increased production of human pro-inflammatory cytokines, including: IFN-γ, IL-8, IL-18, MCP-1, and IL-6, suggesting their role in SLE pathogenesis. Increased expression of type I IFN signature genes was also found in human hepatocytes. Altogether, we showed an SLE model that was mediated by human immune system, and which recapitulated key clinical and immunological SLE features. The advancements of humanised mice SLE model would provide an in vivo platform to facilitate translational studies and pre-clinical evaluations of human-specific mechanisms and immunotherapies.


Lipid bilayer degradation induced by SARS-CoV-2 spike protein as revealed by neutron reflectometry.

  • Alessandra Luchini‎ et al.
  • Scientific reports‎
  • 2021‎

SARS-CoV-2 spike proteins are responsible for the membrane fusion event, which allows the virus to enter the host cell and cause infection. This process starts with the binding of the spike extramembrane domain to the angiotensin-converting enzyme 2 (ACE2), a membrane receptor highly abundant in the lungs. In this study, the extramembrane domain of SARS-CoV-2 Spike (sSpike) was injected on model membranes formed by supported lipid bilayers in presence and absence of the soluble part of receptor ACE2 (sACE2), and the structural features were studied at sub-nanometer level by neutron reflection. In all cases the presence of the protein produced a remarkable degradation of the lipid bilayer. Indeed, both for membranes from synthetic and natural lipids, a significant reduction of the surface coverage was observed. Quartz crystal microbalance measurements showed that lipid extraction starts immediately after sSpike protein injection. All measurements indicate that the presence of proteins induces the removal of membrane lipids, both in the presence and in the absence of ACE2, suggesting that sSpike molecules strongly associate with lipids, and strip them away from the bilayer, via a non-specific interaction. A cooperative effect of sACE2 and sSpike on lipid extraction was also observed.


A novel vibration-induced exercise paradigm improves fitness and lipid metabolism of Caenorhabditis elegans.

  • Emelyne Teo‎ et al.
  • Scientific reports‎
  • 2018‎

Exercise has been known to reduce the risk of obesity and metabolic syndrome, but the mechanisms underlying many exercise benefits remain unclear. This is, in part, due to a lack of exercise paradigms in invertebrate model organisms that would allow rapid mechanistic studies to be conducted. Here we report a novel exercise paradigm in Caenorhabditis elegans (C. elegans) that can be implemented under standard laboratory conditions. Mechanical stimulus in the form of vibration was transduced to C. elegans grown on solid agar media using an acoustic actuator. One day post-exercise, the exercised animals showed greater physical fitness compared to the un-exercised controls. Despite having higher mitochondrial reactive oxygen species levels, no mitohormetic adaptations and lifespan extension were observed in the exercised animals. Nonetheless, exercised animals showed lower triacylglycerides (TAG) accumulation than the controls. Among the individual TAG species, the most significant changes were found in mono- and polyunsaturated fatty acid residues. Such alteration resulted in an overall lower double bond index and peroxidation index which measure susceptibility towards lipid peroxidation. These observations are consistent with findings from mammalian exercise literature, suggesting that exercise benefits are largely conserved across different animal models.


Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure.

  • Nadja S Sieber-Ruckstuhl‎ et al.
  • Scientific reports‎
  • 2019‎

Glucocorticoids (GCs) are critical regulators of metabolic control in mammals and their aberrant function has been linked to several pathologies. GCs are widely used in human and veterinary clinical practice as potent anti-inflammatory and immune suppressive agents. Dyslipidaemia is a frequently observed consequence of GC treatment, typified by increased lipolysis, lipid mobilization, liponeogenesis, and adipogenesis. Dogs with excess GC show hyperlipidaemia, hypertension, and a higher risk of developing type 2 diabetes mellitus, but the risk of developing atherosclerotic lesions is low as compared to humans. This study aimed to examine alterations in the canine plasma lipidome in a model of experimentally induced short-term and long-term GC excess. Both treatments led to significant plasma lipidome alterations, which were more pronounced after long-term excess steroid exposure. In particular, monohexosylceramides, phosphatidylinositols, ether phosphatidylcholines, acyl phosphatidylcholines, triacylglycerols and sphingosine 1-phosphates showed significant changes. The present study highlights the hitherto unknown effects of GCs on lipid metabolism, which will be important in the further elucidation of the role and function of GCs as drugs and in metabolic and cardiovascular diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: