Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 65 papers

Mismatch Repair of DNA Replication Errors Contributes to Microevolution in the Pathogenic Fungus Cryptococcus neoformans.

  • Kylie J Boyce‎ et al.
  • mBio‎
  • 2017‎

The ability to adapt to a changing environment provides a selective advantage to microorganisms. In the case of many pathogens, a large change in their environment occurs when they move from a natural setting to a setting within a human host and then during the course of disease development to various locations within that host. Two clinical isolates of the human fungal pathogen Cryptococcus neoformans were identified from a collection of environmental and clinical strains that exhibited a mutator phenotype, which is a phenotype which provides the ability to change rapidly due to the accumulation of DNA mutations at high frequency. Whole-genome analysis of these strains revealed mutations in MSH2 of the mismatch repair pathway, and complementation confirmed that these mutations are responsible for the mutator phenotype. Comparison of mutation frequencies in deletion strains of eight mismatch repair pathway genes in C. neoformans showed that the loss of three of them, MSH2, MLH1, and PMS1, results in an increase in mutation rates. Increased mutation rates enable rapid microevolution to occur in these strains, generating phenotypic variations in traits associated with the ability to grow in vivo, in addition to allowing rapid generation of resistance to antifungal agents. Mutation of PMS1 reduced virulence, whereas mutation of MSH2 or MLH1 had no effect on the level of virulence. These findings thus support the hypothesis that this pathogenic fungus can take advantage of a mutator phenotype in order to cause disease but that it can do so only in specific pathways that lead to a mutator trait without a significant tradeoff in fitness.IMPORTANCE Fungi account for a large number of infections that are extremely difficult to treat; superficial fungal infections affect approximately 1.7 billion (25%) of the general population worldwide, and systemic fungal diseases result in an unacceptably high mortality rate. How fungi adapt to their hosts is not fully understood. This research investigated the role of changes to DNA sequences in adaption to the host environment and the ability to cause disease in Cryptococcus neoformans, one of the world's most common and most deadly fungal pathogens. The study results showed that microevolutionary rates are enhanced in either clinical isolates or in gene deletion strains with msh2 mutations. This gene has similar functions in regulating the rapid emergence of antifungal drug resistance in a distant fungal relative of C. neoformans, the pathogen Candida glabrata Thus, microevolution resulting from enhanced mutation rates may be a common contributor to fungal pathogenesis.


A Cancer Gene Selection Algorithm Based on the K-S Test and CFS.

  • Qiang Su‎ et al.
  • BioMed research international‎
  • 2017‎

To address the challenging problem of selecting distinguished genes from cancer gene expression datasets, this paper presents a gene subset selection algorithm based on the Kolmogorov-Smirnov (K-S) test and correlation-based feature selection (CFS) principles. The algorithm selects distinguished genes first using the K-S test, and then, it uses CFS to select genes from those selected by the K-S test.


Yeast Fermentate Prebiotic Ameliorates Allergic Asthma, Associating with Inhibiting Inflammation and Reducing Oxidative Stress Level through Suppressing Autophagy.

  • Subo Gong‎ et al.
  • Mediators of inflammation‎
  • 2021‎

Ovalbumin was used to induce allergic asthma following administration of YFP for one week in mice, to collect the lung tissues, bronchoalveolar lavage fluid (BLFA), and feces. The pathological state, tight-junction proteins, inflammatory and oxidative stress-associated biomarkers, and TLRs/NF-κB signaling pathway of the lung tissues were evaluated by HE staining, immunofluorescence, ELISA, and WB, separately. RT-PCR was used to test oxidative stress-associated genes. Leukocyte counts of BLFA and intestinal microbiota were also analyzed using a hemocytometer and 16S rDNA-sequencing, separately.


Adipose tissue inflammation and systemic insulin resistance in mice with diet-induced obesity is possibly associated with disruption of PFKFB3 in hematopoietic cells.

  • Bilian Zhu‎ et al.
  • Laboratory investigation; a journal of technical methods and pathology‎
  • 2021‎

Obesity-associated inflammation in white adipose tissue (WAT) is a causal factor of systemic insulin resistance; however, precisely how immune cells regulate WAT inflammation in relation to systemic insulin resistance remains to be elucidated. The present study examined a role for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in hematopoietic cells in regulating WAT inflammation and systemic insulin sensitivity. Male C57BL/6J mice were fed a high-fat diet (HFD) or low-fat diet (LFD) for 12 weeks and examined for WAT inducible 6-phosphofructo-2-kinase (iPFK2) content, while additional HFD-fed mice were treated with rosiglitazone and examined for PFKFB3 mRNAs in WAT stromal vascular cells (SVC). Also, chimeric mice in which PFKFB3 was disrupted only in hematopoietic cells and control chimeric mice were also fed an HFD and examined for HFD-induced WAT inflammation and systemic insulin resistance. In vitro, adipocytes were co-cultured with bone marrow-derived macrophages and examined for adipocyte proinflammatory responses and insulin signaling. Compared with their respective levels in controls, WAT iPFK2 amount in HFD-fed mice and WAT SVC PFKFB3 mRNAs in rosiglitazone-treated mice were significantly increased. When the inflammatory responses were analyzed, peritoneal macrophages from PFKFB3-disrputed mice revealed increased proinflammatory activation and decreased anti-inflammatory activation compared with control macrophages. At the whole animal level, hematopoietic cell-specific PFKFB3 disruption enhanced the effects of HFD feeding on promoting WAT inflammation, impairing WAT insulin signaling, and increasing systemic insulin resistance. In vitro, adipocytes co-cultured with PFKFB3-disrupted macrophages revealed increased proinflammatory responses and decreased insulin signaling compared with adipocytes co-cultured with control macrophages. These results suggest that PFKFB3 disruption in hematopoietic cells only exacerbates HFD-induced WAT inflammation and systemic insulin resistance.


BMPR2 promotes fatty acid oxidation and protects white adipocytes from cell death in mice.

  • Shuwen Qian‎ et al.
  • Communications biology‎
  • 2020‎

Adipocyte cell death is pathologically involved in both obesity and lipodystrophy. Inflammation and pro-inflammatory cytokines are generally regarded as inducers for adipocyte apoptosis, but whether some innate defects affect their susceptibility to cell death has not been extensively studied. Here, we found bone morphogenetic protein receptor type 2 (BMPR2) knockout adipocytes were prone to cell death, which involved both apoptosis and pyroptosis. BMPR2 deficiency in adipocytes inhibited phosphorylation of perilipin, a lipid-droplet-coating protein, and impaired lipolysis when stimulated by tumor necrosis factor (TNFα), which lead to failure of fatty acid oxidation and oxidative phosphorylation. In addition, impaired lipolysis was associated with mitochondria-mediated apoptosis and pyroptosis as well as elevated inflammation. These results suggest that BMPR2 is important for maintaining the functional integrity of adipocytes and their ability to survive when interacting with inflammatory factors, which may explain why adipocytes among individuals show discrepancy for death responses in inflammatory settings.


B Cells Produce the Tissue-Protective Protein RELMα during Helminth Infection, which Inhibits IL-17 Expression and Limits Emphysema.

  • Fei Chen‎ et al.
  • Cell reports‎
  • 2018‎

Emphysema results in destruction of alveolar walls and enlargement of lung airspaces and has been shown to develop during helminth infections through IL-4R-independent mechanisms. We examined whether interleukin 17A (IL-17A) may instead modulate development of emphysematous pathology in mice infected with the helminth parasite Nippostrongylus brasiliensis. We found that transient elevations in IL-17A shortly after helminth infection triggered subsequent emphysema that destroyed alveolar structures. Furthermore, lung B cells, activated through IL-4R signaling, inhibited early onset of emphysematous pathology. IL-10 and other regulatory cytokines typically associated with B regulatory cell function did not play a major role in this response. Instead, at early stages of the response, B cells produced high levels of the tissue-protective protein, Resistin-like molecule α (RELMα), which then downregulated IL-17A expression. These studies show that transient elevations in IL-17A trigger emphysema and reveal a helminth-induced immune regulatory mechanism that controls IL-17A and the severity of emphysema.


Inositol Metabolism Regulates Capsule Structure and Virulence in the Human Pathogen Cryptococcus neoformans.

  • Yina Wang‎ et al.
  • mBio‎
  • 2021‎

The environmental yeast Cryptococcus neoformans is the most common cause of deadly fungal meningitis in primarily immunocompromised populations. A number of factors contribute to cryptococcal pathogenesis. Among them, inositol utilization has been shown to promote C. neoformans development in nature and invasion of central nervous system during dissemination. The mechanisms of the inositol regulation of fungal virulence remain incompletely understood. In this study, we analyzed inositol-induced capsule growth and the contribution of a unique inositol catabolic pathway in fungal development and virulence. We found that genes involved in the inositol catabolic pathway are highly induced by inositol, and they are also highly expressed in the cerebrospinal fluid of patients with meningoencephalitis. This pathway in C. neoformans contains three genes encoding myo-inositol oxygenases that convert myo-inositol into d-glucuronic acid, a substrate of the pentose phosphate cycle and a component of the polysaccharide capsule. Our mutagenesis analysis demonstrates that inositol catabolism is required for C. neoformans virulence and deletion mutants of myo-inositol oxygenases result in altered capsule growth as well as the polysaccharide structure, including O-acetylation. Our study indicates that the ability to utilize the abundant inositol in the brain may contribute to fungal pathogenesis in this neurotropic fungal pathogen. IMPORTANCE The human pathogen Cryptococcus neoformans is the leading cause of fungal meningitis in primarily immunocompromised populations. Understanding how this environmental organism adapts to the human host to cause deadly infection will guide our development of novel disease control strategies. Our recent studies revealed that inositol utilization by the fungus promotes C. neoformans development in nature and invasion of the central nervous system during infection. The mechanisms of the inositol regulation in fungal virulence remain incompletely understood. In this study, we found that C. neoformans has three genes encoding myo-inositol oxygenase, a key enzyme in the inositol catabolic pathway. Expression of these genes is highly induced by inositol, and they are highly expressed in the cerebrospinal fluid of patients with meningoencephalitis. Our mutagenesis analysis indeed demonstrates that inositol catabolism is required for C. neoformans virulence by altering the growth and structure of polysaccharide capsule, a major virulence factor. Considering the abundance of free inositol and inositol-related metabolites in the brain, our study reveals an important mechanism of host inositol-mediated fungal pathogenesis for this neurotropic fungal pathogen.


Association between plasma somatic copy number variations and response to immunotherapy in patients with programmed death-ligand 1-negative non-small cell lung cancer.

  • Xiaochen Zhang‎ et al.
  • The Journal of international medical research‎
  • 2022‎

To determine how patients with non-small cell lung cancer (NSCLC) with programmed death-ligand 1 (PD-L1)-negative and/or a low tumor mutation burden status benefit from immune checkpoint inhibitors (ICI).


Maternal IL-33 critically regulates tissue remodeling and type 2 immune responses in the uterus during early pregnancy in mice.

  • Nuriban Valero-Pacheco‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

The pregnant uterus is an immunologically rich organ, with dynamic changes in the inflammatory milieu and immune cell function underlying key stages of pregnancy. Recent studies have implicated dysregulated expression of the interleukin-1 (IL-1) family cytokine, IL-33, and its receptor, ST2, in poor pregnancy outcomes in women, including recurrent pregnancy loss, preeclampsia, and preterm labor. How IL-33 supports pregnancy progression in vivo is not well understood. Here, we demonstrate that maternal IL-33 signaling critically regulates uterine tissue remodeling and immune cell function during early pregnancy in mice. IL-33-deficient dams exhibit defects in implantation chamber formation and decidualization, and abnormal vascular remodeling during early pregnancy. These defects coincide with delays in early embryogenesis, increased resorptions, and impaired fetal and placental growth by late pregnancy. At a cellular level, myometrial fibroblasts, and decidual endothelial and stromal cells, are the main IL-33+ cell types in the uterus during decidualization and early placentation, whereas ST2 is expressed by uterine immune populations associated with type 2 immune responses, including ILC2s, Tregs, CD4+ T cells, M2- and cDC2-like myeloid cells, and mast cells. Early pregnancy defects in IL-33-deficient dams are associated with impaired type 2 cytokine responses by uterine lymphocytes and fewer Arginase-1+ macrophages in the uterine microenvironment. Collectively, our data highlight a regulatory network, involving crosstalk between IL-33-producing nonimmune cells and ST2+ immune cells at the maternal-fetal interface, that critically supports pregnancy progression in mice. This work has the potential to advance our understanding of how IL-33 signaling may support optimal pregnancy outcomes in women.


The Anticancer Drug Bleomycin Shows Potent Antifungal Activity by Altering Phospholipid Biosynthesis.

  • Mona Pokharel‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Invasive fungal infections are difficult to treat with limited drug options, mainly because fungi are eukaryotes and share many cellular mechanisms with the human host. Most current antifungal drugs are either fungistatic or highly toxic. Therefore, there is a critical need to identify important fungal specific drug targets for novel antifungal development. Numerous studies have shown the fungal phosphatidylserine (PS) biosynthetic pathway to be a potential target. It is synthesized from CDP-diacylglycerol and serine, and the fungal PS synthesis route is different from that in mammalian cells, in which preexisting phospholipids are utilized to produce PS in a base-exchange reaction. In this study, we utilized a Saccharomyces cerevisiae heterologous expression system to screen for inhibitors of Cryptococcus PS synthase Cho1, a fungi-specific enzyme essential for cell viability. We identified an anticancer compound, bleomycin, as a positive candidate that showed a phospholipid-dependent antifungal effect. Its inhibition on fungal growth can be restored by ethanolamine supplementation. Further exploration of the mechanism of action showed that bleomycin treatment damaged the mitochondrial membrane in yeast cells, leading to increased generation of reactive oxygen species (ROS), whereas supplementation with ethanolamine helped to rescue bleomycin-induced damage. Our results indicate that bleomycin does not specifically inhibit the PS synthase enzyme; however, it may affect phospholipid biosynthesis through disruption of mitochondrial function, namely, the synthesis of phosphatidylethanolamine (PE) and phosphatidylcholine (PC), which helps cells maintain membrane composition and functionality. IMPORTANCE Invasive fungal pathogens cause significant morbidity and mortality, with over 1.5 million deaths annually. Because fungi are eukaryotes that share much of their cellular machinery with the host, our armamentarium of antifungal drugs is highly limited, with only three classes of antifungal drugs available. Drug toxicity and emerging resistance have limited their use. Hence, targeting fungi-specific enzymes that are important for fungal survival, growth, or virulence poses a strategy for novel antifungal development. In this study, we developed a heterologous expression system to screen for chemical compounds with activity against Cryptococcus phosphatidylserine synthase, Cho1, a fungi-specific enzyme that is essential for viability in C. neoformans. We confirmed the feasibility of this screen method and identified a previously unexplored role of the anticancer compound bleomycin in disrupting mitochondrial function and inhibiting phospholipid synthesis.


Interferon ɛ restricts Zika virus infection in the female reproductive tract.

  • Chuan Xu‎ et al.
  • PNAS nexus‎
  • 2023‎

Interferon ɛ (IFNɛ) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections. Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNɛ contributes to protection against ZIKV infection in vivo is unknown. In this study, we show that IFNɛ plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNɛ was expressed not only by epithelial cells in the FRT but also by immune and stromal cells at baseline or after exposure to viruses or specific Toll-like receptor (TLR) agonists. IFNɛ-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal but not subcutaneous ZIKV infection. IFNɛ deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNɛ protected Ifnɛ-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNɛ was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNɛ in mediating protection against the transmission of ZIKV in the context of sexual contact.


An extrafollicular pathway for the generation of effector CD8(+) T cells driven by the proinflammatory cytokine, IL-12.

  • Suhagi Shah‎ et al.
  • eLife‎
  • 2015‎

The proinflammatory cytokine IL-12 drives the generation of terminally differentiated KLRG1(+) effector CD8(+) T cells. Using a Toxoplasma vaccination model, we delineate the sequence of events that naïve CD8(+) T cells undergo to become terminal effectors and the differentiation steps controlled by IL-12. We demonstrate that direct IL-12 signaling on CD8(+) T cells is essential for the induction of KLRG1 and IFN-γ, but the subsequent downregulation of CXCR3 is controlled by IL-12 indirectly through the actions of IFN-γ and IFN-γ-inducible chemokines. Differentiation of nascent effectors occurs in an extrafollicular splenic compartment and is driven by late IL-12 production by DCs distinct from the classical CD8α(+) DC. Unexpectedly, we also found extensive proliferation of both KLRG1(-) and KLRG1(+) CD8(+) T cells in the marginal zone and red pulp, which ceases prior to the final KLRG1(Hi) CXCR3(Lo) stage. Our findings highlight the notion of an extrafollicular pathway for effector T cell generation.


IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge.

  • Alayna K Caffrey‎ et al.
  • PLoS pathogens‎
  • 2015‎

Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how A. fumigatus growth is controlled in the respiratory tract is developing, but still limited. Alveolar macrophages, lung resident macrophages, and airway epithelial cells constitute the first lines of defense against inhaled A. fumigatus conidia. Subsequently, neutrophils and inflammatory CCR2+ monocytes are recruited to the respiratory tract to prevent fungal growth. However, the mechanism of neutrophil and macrophage recruitment to the respiratory tract after A. fumigatus exposure remains an area of ongoing investigation. Here we show that A. fumigatus pulmonary challenge induces expression of the inflammasome-dependent cytokines IL-1β and IL-18 within the first 12 hours, while IL-1α expression continually increases over at least the first 48 hours. Strikingly, Il1r1-deficient mice are highly susceptible to pulmonary A. fumigatus challenge exemplified by robust fungal proliferation in the lung parenchyma. Enhanced susceptibility of Il1r1-deficient mice correlated with defects in leukocyte recruitment and anti-fungal activity. Importantly, IL-1α rather than IL-1β was crucial for optimal leukocyte recruitment. IL-1α signaling enhanced the production of CXCL1. Moreover, CCR2+ monocytes are required for optimal early IL-1α and CXCL1 expression in the lungs, as selective depletion of these cells resulted in their diminished expression, which in turn regulated the early accumulation of neutrophils in the lung after A. fumigatus challenge. Enhancement of pulmonary neutrophil recruitment and anti-fungal activity by CXCL1 treatment could limit fungal growth in the absence of IL-1α signaling. In contrast to the role of IL-1α in neutrophil recruitment, the inflammasome and IL-1β were only essential for optimal activation of anti-fungal activity of macrophages. As such, Pycard-deficient mice are mildly susceptible to A. fumigatus infection. Taken together, our data reveal central, non-redundant roles for IL-1α and IL-1β in controlling A. fumigatus infection in the murine lung.


Brain inositol is a novel stimulator for promoting Cryptococcus penetration of the blood-brain barrier.

  • Tong-Bao Liu‎ et al.
  • PLoS pathogens‎
  • 2013‎

Cryptococcus neoformans is the most common cause of fungal meningitis, with high mortality and morbidity. The reason for the frequent occurrence of Cryptococcus infection in the central nervous system (CNS) is poorly understood. The facts that human and animal brains contain abundant inositol and that Cryptococcus has a sophisticated system for the acquisition of inositol from the environment suggests that host inositol utilization may contribute to the development of cryptococcal meningitis. In this study, we found that inositol plays an important role in Cryptococcus traversal across the blood-brain barrier (BBB) both in an in vitro human BBB model and in in vivo animal models. The capacity of inositol to stimulate BBB crossing was dependent upon fungal inositol transporters, indicated by a 70% reduction in transmigration efficiency in mutant strains lacking two major inositol transporters, Itr1a and Itr3c. Upregulation of genes involved in the inositol catabolic pathway was evident in a microarray analysis following inositol treatment. In addition, inositol increased the production of hyaluronic acid in Cryptococcus cells, which is a ligand known to binding host CD44 receptor for their invasion. These studies suggest an inositol-dependent Cryptococcus traversal of the BBB, and support our hypothesis that utilization of host-derived inositol by Cryptococcus contributes to CNS infection.


Growth-suppressive activity of raloxifene on liver cancer cells by targeting IL-6/GP130 signaling.

  • Yina Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Interleukin-6 (IL-6) is a multifunctional cytokine, which is involved in the regulation of differentiation and growth of certain types of tumor cells. Constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) induced by IL-6 is frequently detected in liver cancer and has emerged as a viable molecular target for liver cancer treatment. However, few inhibitors targeting up-streams of STAT3 are available for the therapy of liver cancer. We reported the discovery of EVISTA (Raloxifene HCl) as novel inhibitor of IL-6/GP130 protein-protein interactions (PPIs) using multiple ligand simultaneous docking (MLSD) and drug repositioning. The possible effect of Raloxifene in STAT3 signaling or liver cancer cells is still unclear.


Incidence and relative risk of cutaneous squamous cell carcinoma with single-agent BRAF inhibitor and dual BRAF/MEK inhibitors in cancer patients: a meta-analysis.

  • Ling Peng‎ et al.
  • Oncotarget‎
  • 2017‎

BRAF inhibitor and dual BRAF/MEK inhibitors have been approved for the treatment of BRAF-mutated melanoma. Cutaneous squamous cell carcinoma (cuSCC) is an adverse event associated with these drugs. The contribution of BRAF inhibitor and dual BRAF/MEK inhibitors to cuSCC are still unknown. We performed this meta-analysis to determine the overall incidence and relative risk of cuSCC in cancer patients treated with these drugs.


Incidence and relative risk of peripheral neuropathy in cancer patients treated with eribulin: a meta-analysis.

  • Ling Peng‎ et al.
  • Oncotarget‎
  • 2017‎

Eribulin is a microtubule inhibitor, which is approved for the treatment of breast cancer. Peripheral neuropathy has been reported in the studies of eribulin, but the incidence and relative risk (RR) of eribulin-associated peripheral neuropathy varied greatly in cancer patients. The purpose of this meta-analysis was to determine the overall incidence and RR of eribulin-associated peripheral neuropathy in cancer patients.


Meta-analysis of the correlation between vitamin D and lung cancer risk and outcomes.

  • Jian Liu‎ et al.
  • Oncotarget‎
  • 2017‎

In this meta-analysis, we analyzed the association between vitamin D levels and lung carcinoma risk and outcomes. Two authors independently searched the Web of Science, Pubmed, EBSCO and Ovid MEDLINE resources with the key words "vitamin D, lung cancer, solar and latitude" and enrolled 22 studies that satisfied the inclusion criteria. The summary odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using the random (or fixed)-effects model. Potential confounders were carefully adjusted. High vitamin D (or calcium) intake and serum 25(OH)D levels each correlated inversely with lung cancer risk [OR = 0.72 (95% CI: 0.61-0.85, p < 0.001) and OR = 0.89 (95% CI: 0.83-0.97, p < 0.05)]. High circulating 25(OH)D levels also reduced lung cancer mortality with the pooled OR reached 0.39 (95% CI: 0.28-0.54, p < 0.001)]. A positive trend was presented in the relationship between serum 25(OH) D and survival (OR = 1.01, 95% CI: 0.87-1.18, p = 0.87). Subgroup analysis revealed that nonsmokers had higher vitamin D levels, which correlated negatively with lung cancer risk (OR = 0.76, 95% CI: 0.65-0.88, p < 0.01). Moreover, lower sun exposure and high latitude associated with lower vitamin D levels. This meta-analysis shows that high vitamin D (or calcium) intake and serum 25(OH)D levels correlate with lower lung cancer risk and better prognosis. UVB and latitude may play a vital role in lung cancer occurrence and progression, although a direct evidence hasn't been obtained.


The first isolate of Candida auris in China: clinical and biological aspects.

  • Xiaojuan Wang‎ et al.
  • Emerging microbes & infections‎
  • 2018‎

The emerging human fungal pathogen Candida auris has been recognized as a multidrug resistant species and is associated with high mortality. This fungus was first described in Japan in 2009 and has been reported in at least 18 countries on five continents. In this study, we report the first isolate of C. auris from the bronchoalveolar lavage fluid (BALF) of a hospitalized woman in China. Interestingly, this isolate is susceptible to all tested antifungals including amphotericin B, fluconazole, and caspofungin. Copper sulfate (CuSO4) also has a potent inhibitory effect on the growth of this fungus. Under different culture conditions, C. auris exhibits multiple morphological phenotypes including round-to-ovoid, elongated, and pseudohyphal-like forms. High concentrations of sodium chloride induce the formation of a pseudohyphal-like form. We further demonstrate that C. auris is much less virulent than Candida albicans in both mouse systemic and invertebrate Galleria mellonella models.


Raloxifene inhibits IL-6/STAT3 signaling pathway and protects against high-fat-induced atherosclerosis in ApoE-/- mice.

  • Pengcheng Luo‎ et al.
  • Life sciences‎
  • 2020‎

The signal transducer and activator of transcription 3 (STAT3) pathway plays an important role in inflammatory cascade process. Our previous studies found that Raloxifene targeted against IL-6/GP130 protein-protein interface and inhibited STAT3 phosphorylation induced by IL-6 in cancer cells. However, whether Raloxifene could suppress IL-6/STAT3 signaling pathway and attenuate atherosclerosis in high-fat diet (HFD)-induced mice remains unknown. The objective of this study was to explore the potential effect of Raloxifene on the prevention of atherosclerosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: