Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

G-protein coupled receptor expression patterns delineate medulloblastoma subgroups.

  • Kelsey L Whittier‎ et al.
  • Acta neuropathologica communications‎
  • 2013‎

Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy.


KLF4K409Q-mutated meningiomas show enhanced hypoxia signaling and respond to mTORC1 inhibitor treatment.

  • Niklas von Spreckelsen‎ et al.
  • Acta neuropathologica communications‎
  • 2020‎

Meningioma represents the most common primary brain tumor in adults. Recently several non-NF2 mutations in meningioma have been identified and correlated with certain pathological subtypes, locations and clinical observations. Alterations of cellular pathways due to these mutations, however, have largely remained elusive. Here we report that the Krueppel like factor 4 (KLF4)-K409Q mutation in skull base meningiomas triggers a distinct tumor phenotype. Transcriptomic analysis of 17 meningioma samples revealed that KLF4K409Q mutated tumors harbor an upregulation of hypoxia dependent pathways. Detailed in vitro investigation further showed that the KLF4K409Q mutation induces HIF-1α through the reduction of prolyl hydroxylase activity and causes an upregulation of downstream HIF-1α targets. Finally, we demonstrate that KLF4K409Q mutated tumors are susceptible to mTOR inhibition by Temsirolimus. Taken together, our data link the KLF4K409Q mediated upregulation of HIF pathways to the clinical and biological characteristics of these skull base meningiomas possibly opening new therapeutic avenues for this distinct meningioma subtype.


Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors.

  • Kohei Fukuoka‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

Extensive molecular analyses of ependymal tumors have revealed that supratentorial and posterior fossa ependymomas have distinct molecular profiles and are likely to be different diseases. The presence of C11orf95-RELA fusion genes in a subset of supratentorial ependymomas (ST-EPN) indicated the existence of molecular subgroups. However, the pathogenesis of RELA fusion-negative ependymomas remains elusive. To investigate the molecular pathogenesis of these tumors and validate the molecular classification of ependymal tumors, we conducted thorough molecular analyses of 113 locally diagnosed ependymal tumors from 107 patients in the Japan Pediatric Molecular Neuro-Oncology Group. All tumors were histopathologically reviewed and 12 tumors were re-classified as non-ependymomas. A combination of RT-PCR, FISH, and RNA sequencing identified RELA fusion in 19 of 29 histologically verified ST-EPN cases, whereas another case was diagnosed as ependymoma RELA fusion-positive via the methylation classifier (68.9%). Among the 9 RELA fusion-negative ST-EPN cases, either the YAP1 fusion, BCOR tandem duplication, EP300-BCORL1 fusion, or FOXO1-STK24 fusion was detected in single cases. Methylation classification did not identify a consistent molecular class within this group. Genome-wide methylation profiling successfully sub-classified posterior fossa ependymoma (PF-EPN) into PF-EPN-A (PFA) and PF-EPN-B (PFB). A multivariate analysis using Cox regression confirmed that PFA was the sole molecular marker which was independently associated with patient survival. A clinically applicable pyrosequencing assay was developed to determine the PFB subgroup with 100% specificity using the methylation status of 3 genes, CRIP1, DRD4 and LBX2. Our results emphasized the significance of molecular classification in the diagnosis of ependymomas. RELA fusion-negative ST-EPN appear to be a heterogeneous group of tumors that do not fall into any of the existing molecular subgroups and are unlikely to form a single category.


Polycomb group gene BMI1 controls invasion of medulloblastoma cells and inhibits BMP-regulated cell adhesion.

  • Ashirwad Merve‎ et al.
  • Acta neuropathologica communications‎
  • 2014‎

Medulloblastoma is the most common intracranial childhood malignancy and a genetically heterogeneous disease. Despite recent advances, current therapeutic approaches are still associated with high morbidity and mortality. Recent molecular profiling has suggested the stratification of medulloblastoma from one single disease into four distinct subgroups namely: WNT Group (best prognosis), SHH Group (intermediate prognosis), Group 3 (worst prognosis) and Group 4 (intermediate prognosis). BMI1 is a Polycomb group repressor complex gene overexpressed across medulloblastoma subgroups but most significantly in Group 4 tumours. Bone morphogenetic proteins are morphogens belonging to TGF-β superfamily of growth factors, known to inhibit medulloblastoma cell proliferation and induce apoptosis.


Medulloblastoma therapy generates risk of a poorly-prognostic H3 wild-type subgroup of diffuse intrinsic pontine glioma: a report from the International DIPG Registry.

  • Hunter C Gits‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

With improved survivorship in medulloblastoma, there has been an increasing incidence of late complications. To date, no studies have specifically addressed the risk of radiation-associated diffuse intrinsic pontine glioma (DIPG) in medulloblastoma survivors. Query of the International DIPG Registry identified six cases of DIPG with a history of medulloblastoma treated with radiotherapy. All patients underwent central radiologic review that confirmed a diagnosis of DIPG. Six additional cases were identified in reports from recent cooperative group medulloblastoma trials (total n = 12; ages 7 to 21 years). From these cases, molecular subgrouping of primary medulloblastomas with available tissue (n = 5) revealed only non-WNT, non-SHH subgroups (group 3 or 4). The estimated cumulative incidence of DIPG after post-treatment medulloblastoma ranged from 0.3-3.9%. Posterior fossa radiation exposure (including brainstem) was greater than 53.0 Gy in all cases with available details. Tumor/germline exome sequencing of three radiation-associated DIPGs revealed an H3 wild-type status and mutational signature distinct from primary DIPG with evidence of radiation-induced DNA damage. Mutations identified in the radiation-associated DIPGs had significant molecular overlap with recurrent drivers of adult glioblastoma (e.g. NRAS, EGFR, and PTEN), as opposed to epigenetic dysregulation in H3-driven primary DIPGs. Patients with radiation-associated DIPG had a significantly worse median overall survival (median 8 months; range 4-17 months) compared to patients with primary DIPG. Here, it is demonstrated that DIPG occurs as a not infrequent complication of radiation therapy in survivors of pediatric medulloblastoma and that radiation-associated DIPGs may present as a poorly-prognostic distinct molecular subgroup of H3 wild-type DIPG. Given the abysmal survival of these cases, these findings provide a compelling argument for efforts to reduce exposure of the brainstem in the treatment of medulloblastoma. Additionally, patients with radiation-associated DIPG may benefit from future therapies targeted to the molecular features of adult glioblastoma rather than primary DIPG.


Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma.

  • Chenan Zhang‎ et al.
  • Acta neuropathologica communications‎
  • 2020‎

Ependymoma is the third most common brain tumor in children, with well-described molecular characterization but poorly understood underlying germline risk factors. To investigate whether genetic predisposition to longer telomere length influences ependymoma risk, we utilized case-control data from three studies: a population-based pediatric and adolescent ependymoma case-control sample from California (153 cases, 696 controls), a hospital-based pediatric posterior fossa type A (EPN-PF-A) ependymoma case-control study from Toronto's Hospital for Sick Children and the Children's Hospital of Philadelphia (83 cases, 332 controls), and a multicenter adult-onset ependymoma case-control dataset nested within the Glioma International Case-Control Consortium (GICC) (103 cases, 3287 controls). In the California case-control sample, a polygenic score for longer telomere length was significantly associated with increased risk of ependymoma diagnosed at ages 12-19 (P = 4.0 × 10-3), but not with ependymoma in children under 12 years of age (P = 0.94). Mendelian randomization supported this observation, identifying a significant association between genetic predisposition to longer telomere length and increased risk of adolescent-onset ependymoma (ORPRS = 1.67; 95% CI 1.18-2.37; P = 3.97 × 10-3) and adult-onset ependymoma (PMR-Egger = 0.042), but not with risk of ependymoma diagnosed before age 12 (OR = 1.12; 95% CI 0.94-1.34; P = 0.21), nor with EPN-PF-A (PMR-Egger = 0.59). These findings complement emerging literature suggesting that augmented telomere maintenance is important in ependymoma pathogenesis and progression, and that longer telomere length is a risk factor for diverse nervous system malignancies.


Improved risk-stratification for posterior fossa ependymoma of childhood considering clinical, histological and genetic features - a retrospective analysis of the HIT ependymoma trial cohort.

  • Stephanie T Jünger‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

Risk stratification of children with ependymomas of the posterior fossa in current therapeutic protocols is mainly based on clinical criteria. We aimed to identify independent outcome predictors for this disease entity by a systematic integrated analysis of clinical, histological and genetic information in a defined cohort of patients treated according to the German HIT protocols.


WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma.

  • Nataliya Zhukova‎ et al.
  • Acta neuropathologica communications‎
  • 2014‎

TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.


Tectal glioma as a distinct diagnostic entity: a comprehensive clinical, imaging, histologic and molecular analysis.

  • Anthony P Y Liu‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

Tectal glioma (TG) is a rare low-grade tumor occurring predominantly in the pediatric population. There has been no detailed analysis of molecular alterations in TG. Risk factors associated with inferior outcome and long-term sequelae of TG have not been well-documented. We retrospectively studied TGs treated or referred for review at St. Jude Children's Research Hospital (SJCRH) between 1986 and 2013. Longitudinal clinical data were summarized, imaging and pathology specimen centrally reviewed, and tumor material analyzed with targeted molecular testing and genome-wide DNA methylation profiling. Forty-five patients with TG were included. Twenty-six (57.8%) were male. Median age at diagnosis was 9.9 years (range, 0.01-20.5). Median follow-up was 7.6 years (range, 0.5-17.0). The most common presenting symptoms were related to increased intracranial pressure. Of the 22 patients treated at SJCRH, 19 (86%) required cerebrospinal fluid diversion and seven (32%) underwent tumor-directed surgery. Five patients (23%) received radiation therapy and four (18%) systemic therapy. Ten-year overall and progression-free survival were 83.9 ± 10.4% and 48.7 ± 14.2%, respectively. Long-term morbidities included chronic headaches, visual symptoms and neurocognitive impairment. Lesion ≥3cm2, contrast enhancement and cystic changes at presentation were risk factors for progression. Among those with tumor tissue available, 83% showed growth patterns similar to pilocytic astrocytoma and 17% aligned best with diffuse astrocytoma. BRAF duplication (a marker of KIAA1549-BRAF fusion) and BRAF V600E mutation were detected in 25% and 7.7%, respectively. No case had histone H3 K27M mutation. DNA methylation profile of TG was distinct from other brain tumors. In summary, TG is an indolent, chronic disease with unique clinical and molecular profiles and associated with long term morbidities. Large size, contrast enhancement and cystic changes are risk factors for progression.


Downregulation of miR-204 expression defines a highly aggressive subset of Group 3/Group 4 medulloblastomas.

  • Harish Shrikrishna Bharambe‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

Genome-wide expression profiling studies have identified four core molecular subgroups of medulloblastoma: WNT, SHH, Group 3 and Group 4. Molecular markers are necessary for accurate risk stratification in the non-WNT subgroups due to the underlying heterogeneity in genetic alterations and overall survival. MiR-204 expression was evaluated in molecularly classified 260 medulloblastomas from an Indian cohort and in 763 medulloblastomas from the MAGIC cohort, SickKids, Canada. Low expression of miR-204 in the Group 3 / Group 4 tumors identify a highly aggressive subset of tumors having poor overall survival, in the two independent cohorts of medulloblastomas. Downregulation of miR-204 expression correlates with poor survival within the Group 4 as well indicating it as a valuable risk-stratification marker in the subgroup. Restoration of miR-204 expression in multiple medulloblastoma cell lines was found to inhibit their anchorage-independent growth, invasion potential and tumorigenicity. IGF2R was identified as a novel target of miR-204. MiR-204 expression resulted in downregulation of both M6PR and IGF2R that transport lysosomal proteases from the Golgi apparatus to the lysosomes. Consistent with this finding, miR-204 expression resulted in reduction in the levels of the lysosomal proteases in medulloblastoma cells. MiR-204 expression also resulted in inhibition of autophagy that is known to be dependent on the lysosomal degradation pathway and LC3B, a known miR-204 target. Treatment with HDAC inhibitors resulted in upregulation of miR-204 expression in medulloblastoma cells, suggesting therapeutic role for these inhibitors in the treatment of medulloblastomas. In summary, miR-204 is not only a valuable risk stratification marker in the combined cohort of Group 3 / Group 4 medulloblastomas as well as in the Group 4 itself, that has paucity of good prognostication markers, but also has therapeutic potential as indicated by its tumor suppressive effect on medulloblastoma cells.


Clinical, imaging, and molecular analysis of pediatric pontine tumors lacking characteristic imaging features of DIPG.

  • Jason Chiang‎ et al.
  • Acta neuropathologica communications‎
  • 2020‎

Diffuse intrinsic pontine glioma (DIPG) is most commonly diagnosed based on imaging criteria, with biopsy often reserved for pontine tumors with imaging features not typical for DIPG (atypical DIPG, 'aDIPG'). The histopathologic and molecular spectra of the clinical entity aDIPG remain to be studied systematically. In this study, thirty-three patients with newly diagnosed pontine-centered tumors with imaging inconsistent with DIPG for whom a pathologic diagnosis was subsequently obtained were included. Neoplasms were characterized by routine histology, immunohistochemistry, interphase fluorescence in situ hybridization, Sanger and next-generation DNA/RNA sequencing, and genome-wide DNA methylome profiling. Clinicopathologic features and survival outcomes were analyzed and compared to those of a contemporary cohort with imaging features consistent with DIPG (typical DIPG, 'tDIPG'). Blinded retrospective neuroimaging review assessed the consistency of the initial imaging-based diagnosis and correlation with histopathology. WHO grade II-IV infiltrating gliomas were observed in 54.6% of the cases; the remaining were low-grade gliomas/glioneuronal tumors or CNS embryonal tumors. Histone H3 K27M mutation, identified in 36% of the cases, was the major prognostic determinant. H3 K27M-mutant aDIPG and H3 K27M-mutant tDIPG had similar methylome profiles but clustered separately from diffuse midline gliomas of the diencephalon and spinal cord. In the aDIPG cohort, clinicoradiographic features did not differ by H3 status, yet significant differences in clinical and imaging features were observed between aDIPG without H3 K27M mutation and tDIPG. Neuroimaging review revealed discordance between the classification of aDIPG and tDIPG and did not correlate with the histology of glial/glioneuronal tumors or tumor grade. One patient (3.1%) developed persistent neurologic deficits after surgery; there were no surgery-related deaths. Our study demonstrates that surgical sampling of aDIPG is well-tolerated and provides significant diagnostic, therapeutic, and prognostic implications, and that neuroimaging alone is insufficient to distinguish aDIPG from tDIPG. H3 K27M-mutant aDIPG is epigenetically and clinically similar to H3 K27M-mutant tDIPG.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: