Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

MiR-203 downregulation is responsible for chemoresistance in human glioblastoma by promoting epithelial-mesenchymal transition via SNAI2.

  • Hongzhan Liao‎ et al.
  • Oncotarget‎
  • 2015‎

Epithelial-mesenchymal transition (EMT) has been recognized as a key element of cell migration, invasion, and drug resistance in several types of cancer. In this study, our aim was to clarify microRNAs (miRNAs)-related mechanisms underlying EMT followed by acquired resistance to chemotherapy in glioblastoma (GBM). We used multiple methods to achieve our goal including microarray analysis, qRT-PCR, western blotting analysis, loss/gain-of-function analysis, luciferase assays, drug sensitivity assays, wound-healing assay and invasion assay. We found that miR-203 expression was significantly lower in imatinib-resistant GBM cells (U251AR, U87AR) that underwent EMT than in their parental cells (U251, U87). Ectopic expression of miR-203 with miRNA mimics effectively reversed EMT in U251AR and U87AR cells, and sensitized them to chemotherapy, whereas inhibition of miR-203 in the sensitive lines with antisense oligonucleotides induced EMT and conferred chemoresistance. SNAI2 was identified as a direct target gene of miR-203. The knockdown of SNAI2 by short hairpin RNA (shRNA) inhibited EMT and drug resistance. In GBM patients, miR-203 expression was inversely related to SNAI2 expression, and those tumors with low expression of miR-203 experienced poorer clinical outcomes. Our findings indicate that re-expression of miR-203 or targeting SNAI2 might serve as potential therapeutic approaches to overcome chemotherapy resistance in GBM.


CK19 mRNA in blood can predict non-sentinel lymph node metastasis in breast cancer.

  • Xing-Fei Yu‎ et al.
  • Oncotarget‎
  • 2016‎

Reverse-transcription polymerase chain reaction (RT-PCR) is used to detect CK19 mRNA in sentinel lymph node biopsy (SLNB) tissues from breast cancer patients. We examined whether CK19 mRNA in peripheral blood is predictive of non-sentinel lymph node (nSLN) metastasis. Breast cancer cases diagnosed with clinical stage cT1-3cN0 and registered in our medical biobank were identified retrospectively. This study then included 120 breast cancer cases treated at Zhejiang Cancer Hospital from Aug 2014 to Aug 2015, including 60 SLN-positive and 60 SLN-negative cases. CK19 mRNA levels in peripheral blood samples were assessed using RT-PCR prior to tumor removal. During surgery, if SLNB tissue showed evidence of metastasis, axillary lymph node dissection (ALND) was performed. No ALND was performed if SLNB and nSLN tissues were both negative for metastasis. CK19 expression was higher in nSLN-positive patients than in nSLN-negative patients (p < 0.05). Logistic regression indicated that lymphatic vessel invasion and CK19 levels were predictive of nSLN status (p < 0.05). The area under the ROC curve for CK19 was 0.878 (p < 0.05). We conclude that high CK19 levels in peripheral blood may independently predict nSLN metastasis in breast cancer patients.


Depression of oncogenecity by dephosphorylating and degrading BCR-ABL.

  • Miao Gao‎ et al.
  • Oncotarget‎
  • 2017‎

Aberrant phosphorylation and overexpression of BCR-ABL fusion protein are responsible for the main pathogenesis in chronic myeloid leukemia (CML). Phosphorylated BCR-ABL Y177 recruits GRB2 adaptor and triggers leukemic RAS-MAPK and PI3K-AKT signals. In this study, we engineered a SPOA system to dephosphorylate and degrade BCR-ABL by targeting BCR-ABL Y177. We tested its effect on BCR-ABL phosphorylation and expression, as well as cell proliferation and apoptosis in CML cells. We found that SPOA remarkably dephosphorylated BCR-ABL Y177, prevented GRB2 recruitment, and uncoupled RAS-MAPK and PI3K-AKT signals. Meanwhile, SPOA degraded BCR-ABL oncoprotein in ubiquitin-independent manner and depressed the signal transduction of STAT5 and CRKL by BCR-ABL. Furthermore, SPOA inhibited proliferation and induced apoptosis in CML cells and depressed the oncogenecity of K562 cells in mice. These results provide evidence that dephosphorylating and degrading oncogenic BCR-ABL offer an alternative CML therapy.


ZYG11A serves as an oncogene in non-small cell lung cancer and influences CCNE1 expression.

  • Xin Wang‎ et al.
  • Oncotarget‎
  • 2016‎

By analyzing The Cancer Genome Atlas (TCGA) database, we identified ZYG11A as a potential oncogene. We determined the expression of ZYG11A in NSCLC tissues and explored its clinical significance. And also evaluated the effects of ZYG11A on NSCLC cell proliferation, migration, and invasion both in vitro and in vivo. Our results show that ZYG11A is hyper-expressed in NSCLC tissues compared to adjacent normal tissues, and increased expression of ZYG11A is associated with a poor prognosis (HR: 2.489, 95%CI: 1.248-4.963, p = 0.010). ZYG11A knockdown induces cell cycle arrest and inhibits proliferation, migration, and invasion of NSCLC cells. ZYG11A knockdown also results in decreased expression of CCNE1. Over-expression of CCNE1 in cells with ZYG11A knockdown restores their oncogenic activities. Our data suggest that ZYG11A may serve as a novel oncogene promoting tumorigenicity of NSCLC cells by inducing cell cycle alterations and increasing CCNE1 expression.


Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer.

  • Juliet D French‎ et al.
  • Oncotarget‎
  • 2016‎

Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.


Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo.

  • Zhengyu Jiang‎ et al.
  • Oncotarget‎
  • 2016‎

Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1-6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo.


Adjuvant treatment may benefit patients with high-risk upper rectal cancer: A nomogram and recursive partitioning analysis of 547 patients.

  • Xin Wang‎ et al.
  • Oncotarget‎
  • 2016‎

The role of adjuvant chemoradiotherapy (ACRT) or adjuvant chemotherapy (ACT) in treating patients with locally advanced upper rectal cancer (URC) after total mesorectal excision (TME) surgery remains unclear. We developed a clinical nomogram and a recursive partitioning analysis (RPA)-based risk stratification system for predicting 5-year cancer-specific survival (CSS) to determine whether these individuals require ACRT or ACT.


Possible contribution of IMRT in postoperative radiochemotherapy for rectal cancer: analysis on 1798 patients by prediction model.

  • Wen-Yang Liu‎ et al.
  • Oncotarget‎
  • 2016‎

The evidence for adjuvant therapy in locally advanced rectal cancer after TME surgery is sparse. The aim of this study was to identify predicting factors of overall survival (OS) in these patients and combine them into a nomogram for individualized treatment. 1798 patients with pathologically staged II/III rectal adenocarcinoma treated by radical TME surgery from a single center's database were reviewed. The nomogram was derived by Cox proportional hazards regression. Its performance was assessed by concordance index and calibration curve in internal validation with bootstrapping. Pooled Cox model analysis identified age, sex, grade of histology, pathological T and N stage, residual tumor, concurrent radiochemotherapy (RTCT), adjuvant chemotherapy cycles (CT), radiotherapy (RT) unexpected interruption days and intensity-modulated radiation therapy (IMRT) as significant covariates for 5-year OS (P<0.05). Postoperative RTCT, CT and IMRT all improved OS. The proposed model can predict 5-year OS with a C-index of 0.7105. IMRT significantly benefited OS in multivariate analysis (p=0.0441).In conclusion, our nomogram can predict 5-year OS after TME surgery for locally advanced rectal cancer with simple and effective advantage. This model may provide not only baseline OS estimate but also a tool for candidates selecting of adjuvant treatment in prospective studies.


miR-340 and ZEB1 negative feedback loop regulates TGF-β- mediated breast cancer progression.

  • Li-Kun Hou‎ et al.
  • Oncotarget‎
  • 2016‎

MicroRNAs act as key regulators in carcinogenesis and progression in various cancers. In present study, we explored the role of miR-340 in the breast cancer progression. Our results showed that overexpression of miR-340 inhibits breast cancer cell proliferation and invasion, whereas depletion of miR-340 promotes breast cancer progression. Molecularly, ZEB1 was identified as a target gene of miR-340 and miR-340 suppressed the expression of ZEB1 by directly binding to the 3'-UTR of ZEB1. Furthermore, ZEB1 transcriptionally suppresses miR-340 expression. The negative feedback loop regulated TGF-β-mediated breast cancer progression. In conclusion, our data suggested that miR-340 acted as a tumor suppressor in breast cancer progression.


Plasma lipid profiling and diagnostic biomarkers for oral squamous cell carcinoma.

  • Lina Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Biological requirements for tumor cell proliferation include the sustained increase of structural, energetic, signal transduction and biosynthetic precursors. Because lipids participate in membrane construction, energy storage, and cell signaling. We hypothesized that the differences in lipids between malignant carcinoma and normal controls could be reflected in the bio-fluids. A total of 100 pre-operative plasma samples were collected from 50 oral squamous cell carcinoma (OSCC), 50 normal patients and characterize by lipid profiling using ultra performance liquid chromatography/electro spray ionization mass spectrometry (UPLC-MS). The lipid profiles of the OSCC and control samples as well as the different stages were compared. Differentially expressed lipids were categorized as glycerophospholipids and sphingolipids. All glycerophospholipids were decreased, especially phosphatidylcholine and phosphoethanolamine plasmalogens, whereas sphingolipids were increased in the OSCC patients compared to the controls. We further identified 12 staging related lipids, which could be utilized to discriminate early stage patients from advanced stage patients. In the future, the differential lipids may provide biologists with additional information regarding lipid metabolism and guide clinicians in making individualized therapeutic decisions if these results are confirmed in a larger study.


SOX9-PDK1 axis is essential for glioma stem cell self-renewal and temozolomide resistance.

  • Zhen Wang‎ et al.
  • Oncotarget‎
  • 2018‎

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with limited therapeutic options. Glioma stem cell (GSC) is thought to be greatly responsible for glioma tumor progression and drug resistance. But the molecular mechanisms of GSC deriving recurrence and drug resistance are still unclear. SOX9 (sex-determining region Y (SRY)-box9 protein), a transcription factor expressed in most solid tumors, is reported as a key regulator involved in maintaining cancer hallmarks including the GSCs state. Previously, we have observed that silencing of SOX9 suppressed glioma cells proliferation both in vitro and in vivo. Here, we found that SOX9 was essential for GSC self-renewal. Silencing of SOX9 down-regulated a broad range of stem cell markers and inhibited glioma cell colony and sphere formation. We identified pyruvate dehydrogenase kinase 1 (PDK1) as a target gene of SOX9 using microarray analyses. PDK1 inactivation greatly inhibited glioma cell colony and sphere formation and sensitized glioma spheres to temozolomide (TMZ) toxicity. In addition, SOX9-shRNA and PDK1 inhibitor could greatly sensitize GSC to TMZ in vivo. Taken together, our data reveals that SOX9-PDK1 axis is a key regulator of GSC self-renewal and GSC temozolomide resistance. These findings may provide help for future human GBM therapy.


Nε-carboxymethyl-lysine promotes calcium deposition in VSMCs via intracellular oxidative stress-induced PDK4 activation and alters glucose metabolism.

  • Wen-Qi Ma‎ et al.
  • Oncotarget‎
  • 2017‎

Diabetes and vascular calcification are intrinsically linked. We previously reported that advanced glycation end products (AGEs) accelerate calcium deposition in vascular smooth muscle cells (VSMCs) via excessive oxidative stress. However, the underlying mechanism remains poorly understood. Pyruvate dehydrogenase kinase 4 (PDK4) is an important mitochondrial matrix enzyme in cellular energy metabolism. Since hyperactivation of PDK4 has been reported in calcified vessels and in patients with diabetes mellitus, inhibition of PDK4 expression may be a strategy for the prevention of diabetic vascular calcification. In this study, we used a rat VSMC model to investigate the role of PDK4 in diabetic vascular calcification and further explore the underlying mechanisms. We observed that Nε-carboxymethyl-lysine (CML), which is a major immunogen of AGEs, accelerated calcium deposition in VSMCs through PDK4 activation. An elevated level of reactive oxygen species (ROS) acted as a signal transduction intermediate to increase PDK4 expression. Either inhibition of PDK4 expression or RAGE (receptor for AGEs) blockade attenuated CML-induced VSMC calcification, as shown by decreased alkaline phosphatase (ALP) activity and runt-related transcription factor 2 (RUNX2) expression. Glucose consumption and lactate production were increased during CML-induced VSMC calcification. Importantly, CML accelerates glycolysis in VSMCs via a PDK4-dependent pathway. In conclusion, this study demonstrates a novel mechanism by which CML promotes VSMC calcification via PDK4 activation and alters glucose metabolism in VSMCs.


Effectiveness of anti-PD-1/PD-L1 antibodies in urothelial carcinoma patients with different PD-L1 expression levels: a meta-analysis.

  • Junqi Liu‎ et al.
  • Oncotarget‎
  • 2018‎

Urothelial carcinoma ranks the ninth among malignant cancers. We conducted this study to identify which patients could benefit more from the treatment of programmed death-1 (PD-1)/programmed death-ligand1 (PD-L1) inhibitors.


Differentially expressed mRNAs, lncRNAs, and miRNAs with associated co-expression and ceRNA networks in ankylosing spondylitis.

  • Chen Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by systemic inflammation and pathological osteogenesis. However, the genetic etiology of AS remains largely unknown. This study aimed to explore the potential role of coding and noncoding genes in the genetic mechanism of AS. Using microarray analyses, this study comprehensively compared lncRNA, microRNA, and mRNA profiles in hip joint ligament tissues from patients with AS and controls. A total of 661 lncRNAs, 574 mRNAs, and 22 microRNAs were differentially expressed in patients with AS compared with controls. Twenty-two of these genes were then validated using real-time polymerase chain reaction. Gene ontology and pathway analyses were performed to explore the principal functions of differentially expressed genes. The pathways were involved mainly in immune regulation, intercellular signaling, osteogenic differentiation, protein synthesis, and degradation. Gene signal transduction network, coding-noncoding co-expression network, and competing endogenous RNA expression network were constructed using bioinformatics methods. Then, two miRNAs, miR-17-5p and miR-27b-3p, that could increase the osteogenic differentiation potentials of ligament fibroblasts were identified. Finally, differentially expressed, five lncRNAs, four miRNAs, and five mRNAs were validated using quantitative real-time polymerase chain reaction. These results suggested that mRNAs, lncRNAs, and microRNAs were involved in AS pathogenesis. The findings might help characterize the pathogenesis of AS and provide novel therapeutic targets for patients with AS in the future.


Combined treatment with artesunate and bromocriptine has synergistic anticancer effects in pituitary adenoma cell lines.

  • Xin Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Prolactinomas are the most prevalent functional pituitary adenomas. The preferred treatments for prolactinomas are dopamine agonists (DAs) such as bromocriptine (BRC), but DAs still have the challenges of tumor recurrence and drug resistance. This study demonstrates that the synergy of function and mechanism between artesunate (ART) and BRC inhibits prolactinoma cell growth in vitro. We found that low-dose ART combined with BRC synergistically inhibited the growth of GH3 and MMQ cell lines, caused cell death, attenuated cell migration and invasion, and suppressed the expression of extracellular prolactin. The induction of apoptosis after co-treatment was confirmed by immunofluorescent staining, assessment of caspase-3 protein expression, and flow cytometry. Expression of miR-200c, a carcinogenic factor in pituitary adenoma, was reduced following co-treatment with ART and BRC. This was accompanied by increased expression of the antitumor factor Pten. Transfection experiments with miR-200c analogs and inhibitors confirmed that miR-200c expression was inversely associated with Pten expression. We suggest that ART and BRC used in combination exert synergistic apoptotic and antitumor effects by suppressing miR-200c and stimulating Pten expression.


(DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit.

  • Xin Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Asp-Glu-Ala-Asp (DEAD)-box RNA helicase 3 (DDX3), an ATP-dependent RNA helicase, is associated with RNA splicing, mRNA export, transcription, translation, and RNA decay. Recent studies revealed that DDX3 participates in innate immune response during virus infection by interacting with TBK1 and regulating the production of IFN-β. In our studies, we demonstrated that DDX3 regulated NF-κB signal pathway. We found that DDX3 knockdown reduced the phosphorylation of p65 and IKK-β and ultimately attenuated the production of inflammatory cytokines induced by poly(I:C) or TNF-α stimulation. The regulatory effect of DDX3 on NF-κB signal pathway was not affected by the loss of its ATPase or helicase activity. We further identified PP2A C subunit (PP2A-C) as an interaction partner of DDX3 by co-immunoprecipitation and mass spectrum analysis. We confirmed that DDX3 formed the complex with PP2A-C/IKK-β and regulated the interaction between IKK-β and PP2A-C. Furthermore, we demonstrated that DDX3 modulated the activity of PP2A by controlling the phosphorylation of PP2A-C, which might enable PP2A-C to regulate NF-κB signal pathway by dephosphorylating IKK-β. All these findings suggested DDX3 plays multiple roles in modulating innate immune system.


Pulmonary fibrosis in a mouse model of sarcoid granulomatosis induced by booster challenge with Propionibacterium acnes.

  • Dingyuan Jiang‎ et al.
  • Oncotarget‎
  • 2016‎

Pulmonary fibrosis (PF) associated with chronic sarcoidosis remains poorly understood, and no experimental model is currently available for this condition. Previous studies have shown that Propionibacterium acnes (PA) was associated with sarcoidosis and induced granuloma formation in mice. Here, we investigated whether repeated challenge with PA induces persistent inflammation leading to sarcoidosis followed by PF in mice. Specifically, C57BL/6 mice were inoculated intraperitoneally and subjected to intratracheal challenge with PA, and then were booster-challenged with either PA or phosphate-buffered saline on day 28. Inflammation, granulomata, and features of fibrosis were evaluated every 7 days until day 70. Complete remission of lung granulomata was apparent on day 42 in the sarcoid-remission group. However, granulomata was present from days 21 to 70 in mice that received PA boosting. Inflammatory cell counts and Th1 cytokine levels in lung lavage fluids were elevated up to day 70. Furthermore, fibrotic changes in the lungs were observed around granulomatous and peribronchovascular regions after PA boosting. Taken together, these findings suggest that development of PF following sarcoidosis may result from continuous PA infection and inflammation. Repeated boosting with PA to induce PF might be a useful model for future studies of sarcoidosis-associated PF.


Potential for subsets of wt-NPM1 primary AML blasts to respond to retinoic acid treatment.

  • Rodica P Bunaciu‎ et al.
  • Oncotarget‎
  • 2018‎

Acute myeloid leukemia (AML) has high mortality rates, perhaps reflecting a lack of understanding of the molecular diversity in various subtypes and a lack of known actionable targets. There are currently 12 open clinical trials for AML using combination therapeutic modalities including all-trans retinoic acid (RA). Mutant nucleophosmin-1, proposed as a possible marker for RA response, is the criterion for recruiting patients in three active RA phase 3 clinical trials. We tested the ability of RA alone or in combination with either bosutinib (B) or 6-formylindolo(3,2-b) carbazole (F) to induce conversion of 12 de novo AML samples toward a more differentiated phenotype. We assessed levels of expression of cell surface markers associated with differentiation, aldehyde dehydrogenase activity, and glucose uptake activity. Colony formation capacity was reduced with the combined treatment of RA and B or F, and correlated with modulation of a c-Cbl/Lyn/c-Raf-centered signalsome. Combination treatment was in most cases more effective than RA alone. Based on their responses to the treatments, some primary leukemic samples cluster closer to HL-60 cells than to other primary samples, suggesting that they may represent a hitherto undefined AML subtype that is potentially responsive to RA in a combination differentiation therapy.


Circulating cell free DNA as the diagnostic marker for colorectal cancer: a systematic review and meta-analysis.

  • Xin Wang‎ et al.
  • Oncotarget‎
  • 2018‎

Quantitative analyses of circulating cell-free DNA (cfDNA) are suggested to be a promising method for the detection of colorectal cancer, validated clinical relevance of cfDNA has not been published so far. Though some of the inconsistent results were published. This study is the first meta-analysis to systematically evaluate the diagnostic accuracy of circulating cfDNA as non-invasive biomarkers for colorectal cancer.


CD300A promotes tumor progression by PECAM1, ADCY7 and AKT pathway in acute myeloid leukemia.

  • Xiaogang Sun‎ et al.
  • Oncotarget‎
  • 2018‎

CD300A is a member of the CD300 glycoprotein family of cell surface proteins involved in immune response signaling pathways. There is evidence that CD300A plays a role in autophagy and angiogenesis, while, no studies have been reported which investigated the role of CD300A in tumors. CD300A was found to be highly expressed with statistical significance in acute myeloid leukemia (AML), as well as associated with prognosis, through the analysis of differential expression genes using the TCGA and GTEx database. A decrease in CD300A expression could promote apoptosis and inhibit proliferation and migration of AML cell line U937, as well as promote the activation of the AKT/mTOR pathway. These results demonstrated that CD300A operated as a tumor promoter in AML cells. We further analyzed coexpression genes of CD300A and then screened two genes, ADCY7 and PECAM1, which were both overexpressed and associated with poor prognosis in AML. Meanwhile, CD300A increased the expression of PECAM1 and ADCY7 in U937 cells. Furthermore, we demonstrated that PECAM1 promoted the proliferation and migration and inhibited the apoptosis of U937 cells. ADCY7 participated in the regulation of proliferation and migration, but not apoptosis, in U937 cells. Both PECAM1 and ADCY7 promoted tumor progression through the AKT pathway, showing the same molecular mechanism as CD300A. To summarize, we, for the first time, confirmed that CD300A promoted tumor progression by increase PECAM1 and ADCY7 expression, and activating the AKT/mTOR signaling pathway in AML. It is suggested CD300A is an oncogene and potential therapeutic target for AML.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: