Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 54 papers

Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1.

  • Julia Kowal‎ et al.
  • Nature communications‎
  • 2014‎

Cyclic nucleotide-modulated ion channels are important for signal transduction and pacemaking in eukaryotes. The molecular determinants of ligand gating in these channels are still unknown, mainly because of a lack of direct structural information. Here we report ligand-induced conformational changes in full-length MloK1, a cyclic nucleotide-modulated potassium channel from the bacterium Mesorhizobium loti, analysed by electron crystallography and atomic force microscopy. Upon cAMP binding, the cyclic nucleotide-binding domains move vertically towards the membrane, and directly contact the S1-S4 voltage sensor domains. This is accompanied by a significant shift and tilt of the voltage sensor domain helices. In both states, the inner pore-lining helices are in an 'open' conformation. We propose a mechanism in which ligand binding can favour pore opening via a direct interaction between the cyclic nucleotide-binding domains and voltage sensors. This offers a simple mechanistic hypothesis for the coupling between ligand gating and voltage sensing in eukaryotic HCN channels.


Molecular electron microscopy: state of the art and current challenges.

  • Henning Stahlberg‎ et al.
  • ACS chemical biology‎
  • 2008‎

The objective of molecular electron microscopy (EM) is to use electron microscopes to visualize the structure of biological molecules. This Review provides a brief overview of the methods used in molecular EM, their respective strengths and successes, and current developments that promise an even more exciting future for molecular EM in the structural investigation of proteins and macromolecular complexes, studied in isolation or in the context of cells and tissues.


Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states.

  • Ioannis Manolaridis‎ et al.
  • Nature‎
  • 2018‎

ABCG2 is a transporter protein of the ATP-binding-cassette (ABC) family that is expressed in the plasma membrane in cells of various tissues and tissue barriers, including the blood-brain, blood-testis and maternal-fetal barriers1-4. Powered by ATP, it translocates endogenous substrates, affects the pharmacokinetics of many drugs and protects against a wide array of xenobiotics, including anti-cancer drugs5-12. Previous studies have revealed the architecture of ABCG2 and the structural basis of its inhibition by small molecules and antibodies13,14. However, the mechanisms of substrate recognition and ATP-driven transport are unknown. Here we present high-resolution cryo-electron microscopy (cryo-EM) structures of human ABCG2 in a substrate-bound pre-translocation state and an ATP-bound post-translocation state. For both structures, we used a mutant containing a glutamine replacing the catalytic glutamate (ABCG2EQ), which resulted in reduced ATPase and transport rates and facilitated conformational trapping for structural studies. In the substrate-bound state, a single molecule of estrone-3-sulfate (E1S) is bound in a central, hydrophobic and cytoplasm-facing cavity about halfway across the membrane. Only one molecule of E1S can bind in the observed binding mode. In the ATP-bound state, the substrate-binding cavity has collapsed while an external cavity has opened to the extracellular side of the membrane. The ATP-induced conformational changes include rigid-body shifts of the transmembrane domains, pivoting of the nucleotide-binding domains (NBDs), and a change in the relative orientation of the NBD subdomains. Mutagenesis and in vitro characterization of transport and ATPase activities demonstrate the roles of specific residues in substrate recognition, including a leucine residue that forms a 'plug' between the two cavities. Our results show how ABCG2 harnesses the energy of ATP binding to extrude E1S and other substrates, and suggest that the size and binding affinity of compounds are important for distinguishing substrates from inhibitors.


Single particle cryo-EM of the complex between interphotoreceptor retinoid-binding protein and a monoclonal antibody.

  • Avery E Sears‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2020‎

Interphotoreceptor retinoid-binding protein (IRBP) is a highly expressed protein secreted by rod and cone photoreceptors that has major roles in photoreceptor homeostasis as well as retinoid and polyunsaturated fatty acid transport between the neural retina and retinal pigment epithelium. Despite two crystal structures reported on fragments of IRBP and decades of research, the overall structure of IRBP and function within the visual cycle remain unsolved. Here, we studied the structure of native bovine IRBP in complex with a monoclonal antibody (mAb5) by cryo-electron microscopy, revealing the tertiary and quaternary structure at sufficient resolution to clearly identify the complex components. Complementary mass spectrometry experiments revealed the structure and locations of N-linked carbohydrate post-translational modifications. This work provides insight into the structure of IRBP, displaying an elongated, flexible three-dimensional architecture not seen among other retinoid-binding proteins. This work is the first step in elucidation of the function of this enigmatic protein.


Protease-activation using anti-idiotypic masks enables tumor specificity of a folate receptor 1-T cell bispecific antibody.

  • Martina Geiger‎ et al.
  • Nature communications‎
  • 2020‎

T-cell bispecific antibodies (TCBs) crosslink tumor and T-cells to induce tumor cell killing. While TCBs are very potent, on-target off-tumor toxicity remains a challenge when selecting targets. Here, we describe a protease-activated anti-folate receptor 1 TCB (Prot-FOLR1-TCB) equipped with an anti-idiotypic anti-CD3 mask connected to the anti-CD3 Fab through a tumor protease-cleavable linker. The potency of this Prot- FOLR1-TCB is recovered following protease-cleavage of the linker releasing the anti-idiotypic anti-CD3 scFv. In vivo, the Prot-FOLR1-TCB mediates antitumor efficacy comparable to the parental FOLR1-TCB whereas a noncleavable control Prot-FOLR1-TCB is inactive. In contrast, killing of bronchial epithelial and renal cortical cells with low FOLR1 expression is prevented compared to the parental FOLR1-TCB. The findings are confirmed for mesothelin as alternative tumor antigen. Thus, masking the anti-CD3 Fab fragment with an anti-idiotypic mask and cleavage of the mask by tumor-specific proteases can be applied to enhance specificity and safety of TCBs.


Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools.

  • Chunyi Hu‎ et al.
  • Molecular cell‎
  • 2022‎

Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degradation. Contrary to this model, here, we show that type I-A Cascade and Cas3 function as an integral effector complex. We provide four cryoelectron microscopy (cryo-EM) snapshots of the Pyrococcus furiosus (Pfu) type I-A effector complex in different stages of DNA recognition and degradation. The HD nuclease of Cas3 is autoinhibited inside the effector complex. It is only allosterically activated upon full R-loop formation, when the entire targeted region has been validated by the RNA guide. The mechanistic insights inspired us to convert Pfu Cascade-Cas3 into a high-sensitivity, low-background, and temperature-activated nucleic acid detection tool. Moreover, Pfu CRISPR-Cas3 shows robust bi-directional deletion-editing activity in human cells, which could find usage in allele-specific inactivation of disease-causing mutations.


Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit.

  • Ching-Ju Tsai‎ et al.
  • eLife‎
  • 2019‎

One of the largest membrane protein families in eukaryotes are G protein-coupled receptors (GPCRs). GPCRs modulate cell physiology by activating diverse intracellular transducers, prominently heterotrimeric G proteins. The recent surge in structural data has expanded our understanding of GPCR-mediated signal transduction. However, many aspects, including the existence of transient interactions, remain elusive. We present the cryo-EM structure of the light-sensitive GPCR rhodopsin in complex with heterotrimeric Gi. Our density map reveals the receptor C-terminal tail bound to the Gβ subunit of the G protein, providing a structural foundation for the role of the C-terminal tail in GPCR signaling, and of Gβ as scaffold for recruiting Gα subunits and G protein-receptor kinases. By comparing available complexes, we found a small set of common anchoring points that are G protein-subtype specific. Taken together, our structure and analysis provide new structural basis for the molecular events of the GPCR signaling pathway.


Cerebral Corpora amylacea are dense membranous labyrinths containing structurally preserved cell organelles.

  • Paula P Navarro‎ et al.
  • Scientific reports‎
  • 2018‎

Corpora amylacea are cell-derived structures that appear physiologically in the aged human brain. While their histological identification is straightforward, their ultrastructural composition and microenvironment at the nanoscale have remained unclear so far, as has their relevance to aging and certain disease states that involve the sequestration of toxic cellular metabolites. Here, we apply correlative serial block-face scanning electron microscopy and transmission electron tomography to gain three-dimensional insight into the ultrastructure and surrounding microenvironment of cerebral Corpora amylacea in the human brainstem and hippocampal region. We find that cerebral Corpora amylacea are composed of dense labyrinth-like sheets of lipid membranes, contain vesicles as well as morphologically preserved mitochondria, and are in close proximity to blood vessels and the glymphatic system, primarily within the cytoplasm of perivascular glial cells. Our results clarify the nature of cerebral Corpora amylacea and provide first hints on how they may arise and develop in the aging brain.


An iris diaphragm mechanism to gate a cyclic nucleotide-gated ion channel.

  • Arin Marchesi‎ et al.
  • Nature communications‎
  • 2018‎

Cyclic nucleotide-gated (CNG) ion channels are non-selective cation channels key to signal transduction. The free energy difference of cyclic-nucleotide (cAMP/cGMP) binding/unbinding is translated into mechanical work to modulate the open/closed probability of the pore, i.e., gating. Despite the recent advances in structural determination of CNG channels, the conformational changes associated with gating remain unknown. Here we examine the conformational dynamics of a prokaryotic homolog of CNG channels, SthK, using high-speed atomic force microscopy (HS-AFM). HS-AFM of SthK in lipid bilayers shows that the CNBDs undergo dramatic conformational changes during the interconversion between the resting (apo and cGMP) and the activated (cAMP) states: the CNBDs approach the membrane and splay away from the 4-fold channel axis accompanied by a clockwise rotation with respect to the pore domain. We propose that these movements may be converted by the C-linker to pull the pore helices open in an iris diaphragm-like mechanism.


Structure of the type VI secretion system contractile sheath.

  • Mikhail Kudryashev‎ et al.
  • Cell‎
  • 2015‎

Bacteria use rapid contraction of a long sheath of the type VI secretion system (T6SS) to deliver effectors into a target cell. Here, we present an atomic-resolution structure of a native contracted Vibrio cholerae sheath determined by cryo-electron microscopy. The sheath subunits, composed of tightly interacting proteins VipA and VipB, assemble into a six-start helix. The helix is stabilized by a core domain assembled from four β strands donated by one VipA and two VipB molecules. The fold of inner and middle layers is conserved between T6SS and phage sheaths. However, the structure of the outer layer is distinct and suggests a mechanism of interaction of the bacterial sheath with an accessory ATPase, ClpV, that facilitates multiple rounds of effector delivery. Our results provide a mechanistic insight into assembly of contractile nanomachines that bacteria and phages use to translocate macromolecules across membranes.


Cryo-EM analysis of homodimeric full-length LRRK2 and LRRK1 protein complexes.

  • Kushal Sejwal‎ et al.
  • Scientific reports‎
  • 2017‎

Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD), and currently one of the most promising therapeutic targets for drug design in Parkinson's disease. In contrast, LRRK1, the closest homologue to LRRK2, does not play any role in PD. Here, we use cryo-electron microscopy (cryo-EM) and single particle analysis to gain structural insight into the full-length dimeric structures of LRRK2 and LRRK1. Differential scanning fluorimetry-based screening of purification buffers showed that elution of the purified LRRK2 protein in a high pH buffer is beneficial in obtaining high quality cryo-EM images. Next, analysis of the 3D maps generated from the cryo-EM data show 16 and 25 Å resolution structures of full length LRRK2 and LRRK1, respectively, revealing the overall shape of the dimers with two-fold symmetric orientations of the protomers that is closely similar between the two proteins. These results suggest that dimerization mechanisms of both LRRKs are closely related and hence that specificities in functions of each LRRK are likely derived from LRRK2 and LRRK1's other biochemical functions. To our knowledge, this study is the first to provide 3D structural insights in LRRK2 and LRRK1 dimers in parallel.


Membrane activity of a C-reactive protein.

  • John M Harrington‎ et al.
  • FEBS letters‎
  • 2009‎

C-reactive protein (CRP) from the American horseshoe crab, Limulus polyphemus, exhibits complex membrane activities. Here, we describe the behavior of protein and lipid as CRP interacts with model liposomes and bacterial membranes. Limulus C-reactive protein (L-CRP) forms extended fibrilar structures that encapsulate liposomes in the presence of Ca(2+). We have observed structures consistent in size and shape with these fibers bound to the surface of Gram-negative bacteria. The membranes of Limulus CRP-treated bacteria exhibit significantly different mechano-elastic properties than those of untreated bacteria. In vitro, bilayer lipids undergo a rigidification and reorganization of small domains. We suggest that these interactions reflect the protein's role as a primary defense molecule, functioning in the entrapment and killing of potential pathogens.


Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion.

  • Rachel M DeVay‎ et al.
  • The Journal of cell biology‎
  • 2009‎

Two dynamin-related protein (DRP) families are essential for fusion of the outer and inner mitochondrial membranes, Fzo1 (yeast)/Mfn1/Mfn2 (mammals) and Mgm1 (yeast)/Opa1 (mammals), respectively. Fzo1/Mfns possess two medial transmembrane domains, which place their critical GTPase and coiled-coil domains in the cytosol. In contrast, Mgm1/Opa1 are present in cells as long (l) isoforms that are anchored via the N terminus to the inner membrane, and short (s) isoforms were predicted to be soluble in the intermembrane space. We addressed the roles of Mgm1 isoforms and how DRPs function in membrane fusion. Our analysis indicates that in the absence of a membrane, l- and s-Mgm1 both exist as inactive GTPase monomers, but that together in trans they form a functional dimer in a cardiolipin-dependent manner that is the building block for higher-order assemblies.


Alterations in Sub-Axonal Architecture Between Normal Aging and Parkinson's Diseased Human Brains Using Label-Free Cryogenic X-ray Nanotomography.

  • Hung Tri Tran‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 μm3. This aspect makes the technique especially attractive for imaging complex biological material, especially neuronal tissues, in combination with downstream optical or electron microscopy techniques. A further advantage is that dehydration, additional contrast staining, and destructive sectioning/milling are not required for imaging. We have developed a pipeline for cryo ptychographic X-ray tomography of relatively large, hydrated and unstained biological tissue volumes beyond what is typical for the X-ray imaging, using human brain tissue and combining the technique with complementary methods. We present four imaged volumes of a Parkinson's diseased human brain and five volumes from a non-diseased control human brain using cryo ptychographic X-ray tomography. In both cases, we distinguish neuromelanin-containing neurons, lipid and melanic pigment, blood vessels and red blood cells, and nuclei of other brain cells. In the diseased sample, we observed several swellings containing dense granular material resembling clustered vesicles between the myelin sheaths arising from the cytoplasm of the parent oligodendrocyte, rather than the axoplasm. We further investigated the pathological relevance of such swollen axons in adjacent tissue sections by immunofluorescence microscopy for phosphorylated alpha-synuclein combined with multispectral imaging. Since cryo ptychographic X-ray tomography is non-destructive, the large dataset volumes were used to guide further investigation of such swollen axons by correlative electron microscopy and immunogold labeling post X-ray imaging, a possibility demonstrated for the first time. Interestingly, we find that protein antigenicity and ultrastructure of the tissue are preserved after the X-ray measurement. As many pathological processes in neurodegeneration affect myelinated axons, our work sets an unprecedented foundation for studies addressing axonal integrity and disease-related changes in unstained brain tissues.


FTLD-TDP assemblies seed neoaggregates with subtype-specific features via a prion-like cascade.

  • Pierre De Rossi‎ et al.
  • EMBO reports‎
  • 2021‎

Morphologically distinct TDP-43 aggregates occur in clinically different FTLD-TDP subtypes, yet the mechanism of their emergence and contribution to clinical heterogeneity are poorly understood. Several lines of evidence suggest that pathological TDP-43 follows a prion-like cascade, but the molecular determinants of this process remain unknown. We use advanced microscopy techniques to compare the seeding properties of pathological FTLD-TDP-A and FTLD-TDP-C aggregates. Upon inoculation of patient-derived aggregates in cells, FTLD-TDP-A seeds amplify in a template-dependent fashion, triggering neoaggregation more efficiently than those extracted from FTLD-TDP-C patients, correlating with the respective disease progression rates. Neoaggregates are sequentially phosphorylated with N-to-C directionality and with subtype-specific timelines. The resulting FTLD-TDP-A neoaggregates are large and contain densely packed fibrils, reminiscent of the pure compacted fibrils present within cytoplasmic inclusions in postmortem brains. In contrast, FTLD-TDP-C dystrophic neurites show less dense fibrils mixed with cellular components, and their respective neoaggregates are small, amorphous protein accumulations. These cellular seeding models replicate aspects of the patient pathological diversity and will be a useful tool in the quest for subtype-specific therapeutics.


Structural insights into the regulation of Cas7-11 by TPR-CHAT.

  • Babatunde Ekundayo‎ et al.
  • Nature structural & molecular biology‎
  • 2023‎

The CRISPR-guided caspase (Craspase) complex is an assembly of the target-specific RNA nuclease known as Cas7-11 bound to CRISPR RNA (crRNA) and an ancillary protein known as TPR-CHAT (tetratricopeptide repeats (TPR) fused with a CHAT domain). The Craspase complex holds promise as a tool for gene therapy and biomedical research, but its regulation is poorly understood. TPR-CHAT regulates Cas7-11 nuclease activity via an unknown mechanism. In the present study, we use cryoelectron microscopy to determine structures of the Desulfonema magnum (Dm) Craspase complex to gain mechanistic insights into its regulation. We show that DmTPR-CHAT stabilizes crRNA-bound DmCas7-11 in a closed conformation via a network of interactions mediated by the DmTPR-CHAT N-terminal domain, the DmCas7-11 insertion finger and Cas11-like domain, resulting in reduced target RNA accessibility and cleavage.


Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies.

  • Florian Ingo Schmidt‎ et al.
  • Cell reports‎
  • 2013‎

Host cell entry of vaccinia virus, the prototypic poxvirus, involves a membrane fusion event delivering the viral core and two proteinaceous lateral bodies (LBs) into the cytosol. Uncoating of viral cores is poorly characterized, and the composition and function of LBs remains enigmatic. We found that cytosolic cores rapidly dissociated from LBs and expanded in volume, which coincided with reduction of disulfide-bonded core proteins. We identified the abundant phosphoprotein F17, the dual-specificity phosphatase VH1, and the oxidoreductase G4 as bona fide LB components. After reaching the cytosol, F17 was degraded in a proteasome-dependent manner. Proteasome activity, and presumably LB disassembly, was required for the immediate immunomodulatory activity of VH1: dephosphorylation of STAT1 to prevent interferon-γ-mediated antiviral responses. These results reveal a mechanism used by poxviruses to deliver viral enzymes to the host cell cytosol and are likely to facilitate the identification of additional LB-resident viral effectors.


Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution.

  • Kathryn E Runge‎ et al.
  • Developmental biology‎
  • 2007‎

Microvilli are found on the surface of many cell types, including the mammalian oocyte, where they are thought to act in initial contact of sperm and oocyte plasma membranes. CD9 is currently the only oocyte protein known to be required for sperm-oocyte fusion. We found CD9 is localized to the oocyte microvillar membrane using transmission electron microscopy (TEM). Scanning electron microscopy (SEM) showed that CD9 null oocytes, which are unable to fuse with sperm, have an altered length, thickness and density of their microvilli. One aspect of this change in morphology was quantified using TEM by measuring the radius of curvature at the microvillar tips. A small radius of curvature is thought to promote fusibility and the radius of curvature of microvillar tips on CD9 wild-type oocytes was found to be half that of the CD9 null oocytes. We found that oocyte CD9 co-immunoprecipitates with two Ig superfamily cis partners, EWI-2 and EWI-F, which could have a role in linking CD9 to the oocyte microvillar actin core. We also examined latrunculin B-treated oocytes, which are known to have reduced fusion ability, and found altered microvillar morphology by SEM and TEM. Our data suggest that microvilli may participate in sperm-oocyte fusion. Microvilli could act as a platform to concentrate adhesion/fusion proteins and/or provide a membrane protrusion with a low radius of curvature. They may also have a dynamic interaction with the sperm that serves to capture the sperm cell and bring it into close contact with the oocyte plasma membrane.


Trans-seeding of Alzheimer-related tau protein by a yeast prion.

  • Martin Flach‎ et al.
  • Alzheimer's & dementia : the journal of the Alzheimer's Association‎
  • 2022‎

Abnormal tau protein aggregates constitute a hallmark of Alzheimer's disease. The mechanisms underlying the initiation of tau aggregation in sporadic neurodegeneration remain unclear. Here we investigate whether a non-human prion can seed tau aggregation. Due to their structural similarity with tau aggregates, we chose Sup35NM yeast prion domain fibrils for explorative tau seedings. Upon in vitro incubation with tau monomers, Sup35NM fibrils promoted the formation of morphologically distinct tau fibril strains. In vivo, intrahippocampal inoculation of Sup35NM fibrils accentuated tau pathology in P301S tau transgenic mice. Thus, our results provide first in vivo evidence for heterotypic cross-species seeding of a neurodegenerative human prion-like protein by a yeast prion. This opens up the conceptual perspective that non-mammalian prions present in the human microbiome could be involved in the initiation of protein misfolding in neurodegenerative disorders, a mechanism for which we propose the term "trans-seeding."


Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys.

  • Craig Fenwick‎ et al.
  • Nature microbiology‎
  • 2022‎

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 Å resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: