Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease.

  • Clifford R Jack‎ et al.
  • Brain : a journal of neurology‎
  • 2009‎

The purpose of this study was to use serial imaging to gain insight into the sequence of pathologic events in Alzheimer's disease, and the clinical features associated with this sequence. We measured change in amyloid deposition over time using serial (11)C Pittsburgh compound B (PIB) positron emission tomography and progression of neurodegeneration using serial structural magnetic resonance imaging. We studied 21 healthy cognitively normal subjects, 32 with amnestic mild cognitive impairment and 8 with Alzheimer's disease. Subjects were drawn from two sources--ongoing longitudinal registries at Mayo Clinic, and the Alzheimer's disease Neuroimaging Initiative (ADNI). All subjects underwent clinical assessments, MRI and PIB studies at two time points, approximately one year apart. PIB retention was quantified in global cortical to cerebellar ratio units and brain atrophy in units of cm(3) by measuring ventricular expansion. The annual change in global PIB retention did not differ by clinical group (P = 0.90), and although small (median 0.042 ratio units/year overall) was greater than zero among all subjects (P < 0.001). Ventricular expansion rates differed by clinical group (P < 0.001) and increased in the following order: cognitively normal (1.3 cm(3)/year) < amnestic mild cognitive impairment (2.5 cm(3)/year) < Alzheimer's disease (7.7 cm(3)/year). Among all subjects there was no correlation between PIB change and concurrent change on CDR-SB (r = -0.01, P = 0.97) but some evidence of a weak correlation with MMSE (r =-0.22, P = 0.09). In contrast, greater rates of ventricular expansion were clearly correlated with worsening concurrent change on CDR-SB (r = 0.42, P < 0.01) and MMSE (r =-0.52, P < 0.01). Our data are consistent with a model of typical late onset Alzheimer's disease that has two main features: (i) dissociation between the rate of amyloid deposition and the rate of neurodegeneration late in life, with amyloid deposition proceeding at a constant slow rate while neurodegeneration accelerates and (ii) clinical symptoms are coupled to neurodegeneration not amyloid deposition. Significant plaque deposition occurs prior to clinical decline. The presence of brain amyloidosis alone is not sufficient to produce cognitive decline, rather, the neurodegenerative component of Alzheimer's disease pathology is the direct substrate of cognitive impairment and the rate of cognitive decline is driven by the rate of neurodegeneration. Neurodegeneration (atrophy on MRI) both precedes and parallels cognitive decline. This model implies a complimentary role for MRI and PIB imaging in Alzheimer's disease, with each reflecting one of the major pathologies, amyloid dysmetabolism and neurodegeneration.


Cognitive reserve and Alzheimer's disease biomarkers are independent determinants of cognition.

  • Prashanthi Vemuri‎ et al.
  • Brain : a journal of neurology‎
  • 2011‎

The objective of this study was to investigate how a measure of educational and occupational attainment, a component of cognitive reserve, modifies the relationship between biomarkers of pathology and cognition in Alzheimer's disease. The biomarkers evaluated quantified neurodegeneration via atrophy on magnetic resonance images, neuronal injury via cerebral spinal fluid t-tau, brain amyloid-β load via cerebral spinal fluid amyloid-β1-42 and vascular disease via white matter hyperintensities on T2/proton density magnetic resonance images. We included 109 cognitively normal subjects, 192 amnestic patients with mild cognitive impairment and 98 patients with Alzheimer's disease, from the Alzheimer's Disease Neuroimaging Initiative study, who had undergone baseline lumbar puncture and magnetic resonance imaging. We combined patients with mild cognitive impairment and Alzheimer's disease in a group labelled 'cognitively impaired' subjects. Structural Abnormality Index scores, which reflect the degree of Alzheimer's disease-like anatomic features on magnetic resonance images, were computed for each subject. We assessed Alzheimer's Disease Assessment Scale (cognitive behaviour section) and mini-mental state examination scores as measures of general cognition and Auditory-Verbal Learning Test delayed recall, Boston naming and Trails B scores as measures of specific domains in both groups of subjects. The number of errors on the American National Adult Reading Test was used as a measure of environmental enrichment provided by educational and occupational attainment, a component of cognitive reserve. We found that in cognitively normal subjects, none of the biomarkers correlated with the measures of cognition, whereas American National Adult Reading Test scores were significantly correlated with Boston naming and mini-mental state examination results. In cognitively impaired subjects, the American National Adult Reading Test and all biomarkers of neuronal pathology and amyloid load were independently correlated with all cognitive measures. Exceptions to this general conclusion were absence of correlation between cerebral spinal fluid amyloid-β1-42 and Boston naming and Trails B. In contrast, white matter hyperintensities were only correlated with Boston naming and Trails B results in the cognitively impaired. When all subjects were included in a flexible ordinal regression model that allowed for non-linear effects and interactions, we found that the American National Adult Reading Test had an independent additive association such that better performance was associated with better cognitive performance across the biomarker distribution. Our main conclusions included: (i) that in cognitively normal subjects, the variability in cognitive performance is explained partly by the American National Adult Reading Test and not by biomarkers of Alzheimer's disease pathology; (ii) in cognitively impaired subjects, the American National Adult Reading Test, biomarkers of neuronal pathology (structural magnetic resonance imaging and cerebral spinal fluid t-tau) and amyloid load (cerebral spinal fluid amyloid-β1-42) all independently explain variability in general cognitive performance; and (iii) that the association between cognition and the American National Adult Reading Test was found to be additive rather than to interact with biomarkers of Alzheimer's disease pathology.


Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease.

  • Rahul S Desikan‎ et al.
  • Brain : a journal of neurology‎
  • 2009‎

Mild cognitive impairment can represent a transitional state between normal ageing and Alzheimer's disease. Non-invasive diagnostic methods are needed to identify mild cognitive impairment individuals for early therapeutic interventions. Our objective was to determine whether automated magnetic resonance imaging-based measures could identify mild cognitive impairment individuals with a high degree of accuracy. Baseline volumetric T1-weighted magnetic resonance imaging scans of 313 individuals from two independent cohorts were examined using automated software tools to identify the volume and mean thickness of 34 neuroanatomic regions. The first cohort included 49 older controls and 48 individuals with mild cognitive impairment, while the second cohort included 94 older controls and 57 mild cognitive impairment individuals. Sixty-five patients with probable Alzheimer's disease were also included for comparison. For the discrimination of mild cognitive impairment, entorhinal cortex thickness, hippocampal volume and supramarginal gyrus thickness demonstrated an area under the curve of 0.91 (specificity 94%, sensitivity 74%, positive likelihood ratio 12.12, negative likelihood ratio 0.29) for the first cohort and an area under the curve of 0.95 (specificity 91%, sensitivity 90%, positive likelihood ratio 10.0, negative likelihood ratio 0.11) for the second cohort. For the discrimination of Alzheimer's disease, these three measures demonstrated an area under the curve of 1.0. The three magnetic resonance imaging measures demonstrated significant correlations with clinical and neuropsychological assessments as well as with cerebrospinal fluid levels of tau, hyperphosphorylated tau and abeta 42 proteins. These results demonstrate that automated magnetic resonance imaging measures can serve as an in vivo surrogate for disease severity, underlying neuropathology and as a non-invasive diagnostic method for mild cognitive impairment and Alzheimer's disease.


Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve.

  • Olivier Querbes‎ et al.
  • Brain : a journal of neurology‎
  • 2009‎

Brain atrophy measured by magnetic resonance structural imaging has been proposed as a surrogate marker for the early diagnosis of Alzheimer's disease. Studies on large samples are still required to determine its practical interest at the individual level, especially with regards to the capacity of anatomical magnetic resonance imaging to disentangle the confounding role of the cognitive reserve in the early diagnosis of Alzheimer's disease. One hundred and thirty healthy controls, 122 subjects with mild cognitive impairment of the amnestic type and 130 Alzheimer's disease patients were included from the ADNI database and followed up for 24 months. After 24 months, 72 amnestic mild cognitive impairment had converted to Alzheimer's disease (referred to as progressive mild cognitive impairment, as opposed to stable mild cognitive impairment). For each subject, cortical thickness was measured on the baseline magnetic resonance imaging volume. The resulting cortical thickness map was parcellated into 22 regions and a normalized thickness index was computed using the subset of regions (right medial temporal, left lateral temporal, right posterior cingulate) that optimally distinguished stable mild cognitive impairment from progressive mild cognitive impairment. We tested the ability of baseline normalized thickness index to predict evolution from amnestic mild cognitive impairment to Alzheimer's disease and compared it to the predictive values of the main cognitive scores at baseline. In addition, we studied the relationship between the normalized thickness index, the education level and the timeline of conversion to Alzheimer's disease. Normalized thickness index at baseline differed significantly among all the four diagnosis groups (P < 0.001) and correctly distinguished Alzheimer's disease patients from healthy controls with an 85% cross-validated accuracy. Normalized thickness index also correctly predicted evolution to Alzheimer's disease for 76% of amnestic mild cognitive impairment subjects after cross-validation, thus showing an advantage over cognitive scores (range 63-72%). Moreover, progressive mild cognitive impairment subjects, who converted later than 1 year after baseline, showed a significantly higher education level than those who converted earlier than 1 year after baseline. Using a normalized thickness index-based criterion may help with early diagnosis of Alzheimer's disease at the individual level, especially for highly educated subjects, up to 24 months before clinical criteria for Alzheimer's disease diagnosis are met.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: