Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 742 papers

Common Effects of Amnestic Mild Cognitive Impairment on Resting-State Connectivity Across Four Independent Studies.

  • Angela Tam‎ et al.
  • Frontiers in aging neuroscience‎
  • 2015‎

Resting-state functional connectivity is a promising biomarker for Alzheimer's disease. However, previous resting-state functional magnetic resonance imaging studies in Alzheimer's disease and amnestic mild cognitive impairment (aMCI) have shown limited reproducibility as they have had small sample sizes and substantial variation in study protocol. We sought to identify functional brain networks and connections that could consistently discriminate normal aging from aMCI despite variations in scanner manufacturer, imaging protocol, and diagnostic procedure. We therefore combined four datasets collected independently, including 112 healthy controls and 143 patients with aMCI. We systematically tested multiple brain connections for associations with aMCI using a weighted average routinely used in meta-analyses. The largest effects involved the superior medial frontal cortex (including the anterior cingulate), dorsomedial prefrontal cortex, striatum, and middle temporal lobe. Compared with controls, patients with aMCI exhibited significantly decreased connectivity between default mode network nodes and between regions of the cortico-striatal-thalamic loop. Despite the heterogeneity of methods among the four datasets, we identified common aMCI-related connectivity changes with small to medium effect sizes and sample size estimates recommending a minimum of 140 to upwards of 600 total subjects to achieve adequate statistical power in the context of a multisite study with 5-10 scanning sites and about 10 subjects per group and per site. If our findings can be replicated and associated with other established biomarkers of Alzheimer's disease (e.g., amyloid and tau quantification), then these functional connections may be promising candidate biomarkers for Alzheimer's disease.


Removing inter-subject technical variability in magnetic resonance imaging studies.

  • Jean-Philippe Fortin‎ et al.
  • NeuroImage‎
  • 2016‎

Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to a template into a biological component and an unwanted variation component. The unwanted variation component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White Stripe. We show that RAVEL performs best at improving the replicability of the brain regions that are empirically found to be most associated with AD, and that these regions are significantly more present in structures impacted by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing between MCI subjects and healthy subjects using the mean hippocampal intensity (AUC=67%), a marked improvement compared to results from intensity normalization alone (AUC=63% and 59% for histogram matching and White Stripe, respectively). RAVEL is promising for many other imaging modalities.


Acceleration of hippocampal atrophy rates in asymptomatic amyloidosis.

  • K Abigail Andrews‎ et al.
  • Neurobiology of aging‎
  • 2016‎

Increased rates of brain atrophy measured from serial magnetic resonance imaging precede symptom onset in Alzheimer's disease and may be useful outcome measures for prodromal clinical trials. Appropriate trial design requires a detailed understanding of the relationships between β-amyloid load and accumulation, and rate of brain change at this stage of the disease. Fifty-two healthy individuals (72.3 ± 6.9 years) from Australian Imaging, Biomarkers and Lifestyle Study of Aging had serial (0, 18 m, 36 m) magnetic resonance imaging, (0, 18 m) Pittsburgh compound B positron emission tomography, and clinical assessments. We calculated rates of whole brain and hippocampal atrophy, ventricular enlargement, amyloid accumulation, and cognitive decline. Over 3 years, rates of whole brain atrophy (p < 0.001), left and right hippocampal atrophy (p = 0.001, p = 0.023), and ventricular expansion (p < 0.001) were associated with baseline β-amyloid load. Whole brain atrophy rates were also independently associated with β-amyloid accumulation over the first 18 months (p = 0.003). Acceleration of left hippocampal atrophy rate was associated with baseline β-amyloid load across the cohort (p < 0.02). We provide evidence that rates of atrophy are associated with both baseline β-amyloid load and accumulation, and that there is presymptomatic, amyloid-mediated acceleration of hippocampal atrophy. Clinical trials using rate of hippocampal atrophy as an outcome measure should not assume linear decline in the presymptomatic phase.


Heritability and reliability of automatically segmented human hippocampal formation subregions.

  • Christopher D Whelan‎ et al.
  • NeuroImage‎
  • 2016‎

The human hippocampal formation can be divided into a set of cytoarchitecturally and functionally distinct subregions, involved in different aspects of memory formation. Neuroanatomical disruptions within these subregions are associated with several debilitating brain disorders including Alzheimer's disease, major depression, schizophrenia, and bipolar disorder. Multi-center brain imaging consortia, such as the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium, are interested in studying disease effects on these subregions, and in the genetic factors that affect them. For large-scale studies, automated extraction and subsequent genomic association studies of these hippocampal subregion measures may provide additional insight. Here, we evaluated the test-retest reliability and transplatform reliability (1.5T versus 3T) of the subregion segmentation module in the FreeSurfer software package using three independent cohorts of healthy adults, one young (Queensland Twins Imaging Study, N=39), another elderly (Alzheimer's Disease Neuroimaging Initiative, ADNI-2, N=163) and another mixed cohort of healthy and depressed participants (Max Planck Institute, MPIP, N=598). We also investigated agreement between the most recent version of this algorithm (v6.0) and an older version (v5.3), again using the ADNI-2 and MPIP cohorts in addition to a sample from the Netherlands Study for Depression and Anxiety (NESDA) (N=221). Finally, we estimated the heritability (h(2)) of the segmented subregion volumes using the full sample of young, healthy QTIM twins (N=728). Test-retest reliability was high for all twelve subregions in the 3T ADNI-2 sample (intraclass correlation coefficient (ICC)=0.70-0.97) and moderate-to-high in the 4T QTIM sample (ICC=0.5-0.89). Transplatform reliability was strong for eleven of the twelve subregions (ICC=0.66-0.96); however, the hippocampal fissure was not consistently reconstructed across 1.5T and 3T field strengths (ICC=0.47-0.57). Between-version agreement was moderate for the hippocampal tail, subiculum and presubiculum (ICC=0.78-0.84; Dice Similarity Coefficient (DSC)=0.55-0.70), and poor for all other subregions (ICC=0.34-0.81; DSC=0.28-0.51). All hippocampal subregion volumes were highly heritable (h(2)=0.67-0.91). Our findings indicate that eleven of the twelve human hippocampal subregions segmented using FreeSurfer version 6.0 may serve as reliable and informative quantitative phenotypes for future multi-site imaging genetics initiatives such as those of the ENIGMA consortium.


Blood metabolite markers of neocortical amyloid-β burden: discovery and enrichment using candidate proteins.

  • N Voyle‎ et al.
  • Translational psychiatry‎
  • 2016‎

We believe this is the first study to investigate associations between blood metabolites and neocortical amyloid burden (NAB) in the search for a blood-based biomarker for Alzheimer's disease (AD). Further, we present the first multi-modal analysis of blood markers in this field. We used blood plasma samples from 91 subjects enrolled in the University of California, San Francisco Alzheimer's Disease Research Centre. Non-targeted metabolomic analysis was used to look for associations with NAB using both single and multiple metabolic feature models. Five metabolic features identified subjects with high NAB, with 72% accuracy. We were able to putatively identify four metabolites from this panel and improve the model further by adding fibrinogen gamma chain protein measures (accuracy=79%). One of the five metabolic features was studied in the Alzheimer's Disease Neuroimaging Initiative cohort, but results were inconclusive. If replicated in larger, independent studies, these metabolic features and proteins could form the basis of a blood test with potential for enrichment of amyloid pathology in anti-amyloid trials.


Summative effects of vascular risk factors on cortical thickness in mild cognitive impairment.

  • Ekaterina Tchistiakova‎ et al.
  • Neurobiology of aging‎
  • 2016‎

Vascular risk factors (VRFs) increase the risk of Alzheimer's disease (AD) and contribute to neurodegenerative processes. The purpose of this study was to investigate whether increasing number of VRFs contributes to within-cohort differences in cortical thickness (CThk) among adults with mild cognitive impairment (MCI) and cognitively intact older controls from the AD Neuroimaging Initiative 1, GO, and 2 data sets. Multivariate partial least squares analysis was used to investigate the effect of VRF index on regional CThk measurements, which produced a significant latent variable and identified patterns of cortical thinning in the MCI group but not controls. Subsequent analyses tested the interaction effects between VRF index and cognitive grouping and examined 1-year follow-up data. There was evidence of a VRF index by cognitive group interaction. Partial least squares results were replicated at 1-year follow-up among MCI cohort in a subset of baseline CThk regions. This study provides evidence that a summative VRF index accounts for some of the variance in brain tissue loss in regions implicated in AD among MCI adults.


Detection of Alzheimer's disease at mild cognitive impairment and disease progression using autoantibodies as blood-based biomarkers.

  • Cassandra A DeMarshall‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2016‎

There is an urgent need to identify biomarkers that can accurately detect and diagnose Alzheimer's disease (AD). Autoantibodies are abundant and ubiquitous in human sera and have been previously demonstrated as disease-specific biomarkers capable of accurately diagnosing mild-moderate stages of AD and Parkinson's disease.


Single time point high-dimensional morphometry in Alzheimer's disease: group statistics on longitudinally acquired data.

  • Simon Duchesne‎ et al.
  • Neurobiology of aging‎
  • 2015‎

Quantitative assessment of medial temporal lobe atrophy has been proposed as a biomarker for Alzheimer's disease (AD) diagnostic and prognostic in mild cognitive impairment (MCI) due to AD. We present the first results of our high-dimensional morphometry technique, tracking tissue composition, and atrophy changes on T1-weighted magnetic resonance imaging at various time points. We selected 187 control subjects, 17 control subjects having progressed to MCI and/or AD, 178 subjects with stable MCI, 165 subjects with MCI having progressed to AD, and 147 AD subjects from the Alzheimer's Disease Neuroimaging Initiative study. Results show statistically significant differences between almost every diagnostic and time point comparison pairs (0-12, 12-24, and 24-36 months), including controls having progressed to either MCI or AD and trajectory dynamics that demonstrate the algorithm's ability at tracking specific pathology-related neurodegeneration.


Alterations in brain leptin signalling in spite of unchanged CSF leptin levels in Alzheimer's disease.

  • Silvia Maioli‎ et al.
  • Aging cell‎
  • 2015‎

Several studies support the relation between leptin and Alzheimer's disease (AD). We show that leptin levels in CSF are unchanged as subjects progress to AD. However, in AD hippocampus, leptin signalling was decreased and leptin localization was shifted, being more abundant in reactive astrocytes and less in neurons. Similar translocation of leptin was found in brains from Tg2576 and apoE4 mice. Moreover, an enhancement of leptin receptors was found in hippocampus of young Tg2576 mice and in primary astrocytes and neurons treated with Aβ₁₋₄₂. In contrast, old Tg2576 mice showed decreased leptin receptors levels. Similar findings to those seen in Tg2576 mice were found in apoE4, but not in apoE3 mice. These results suggest that leptin levels are intact, but leptin signalling is impaired in AD. Thus, Aβ accumulation and apoE4 genotype result in a transient enhancement of leptin signalling that might lead to a leptin resistance state over time.


Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer's disease.

  • Xiaolan Hu‎ et al.
  • PloS one‎
  • 2011‎

Recent GWAS studies focused on uncovering novel genetic loci related to AD have revealed associations with variants near CLU, CR1, PICALM and BIN1. In this study, we conducted a genome-wide association study in an independent set of 1034 cases and 1186 controls using the Illumina genotyping platforms. By coupling our data with available GWAS datasets from the ADNI and GenADA, we replicated the original associations in both PICALM (rs3851179) and CR1 (rs3818361). The PICALM variant seems to be non-significant after we adjusted for APOE e4 status. We further tested our top markers in 751 independent cases and 751 matched controls. Besides the markers close to the APOE locus, a marker (rs12989701) upstream of BIN1 locus was replicated and the combined analysis reached genome-wide significance level (p = 5E-08). We combined our data with the published Harold et al. study and meta-analysis with all available 6521 cases and 10360 controls at the BIN1 locus revealed two significant variants (rs12989701, p = 1.32E-10 and rs744373, p = 3.16E-10) in limited linkage disequilibrium (r²  =  0.05) with each other. The independent contribution of both SNPs was supported by haplotype conditional analysis. We also conducted multivariate analysis in canonical pathways and identified a consistent signal in the downstream pathways targeted by Gleevec (P = 0.004 in Pfizer; P = 0.028 in ADNI and P = 0.04 in GenADA). We further tested variants in CLU, PICALM, BIN1 and CR1 for association with disease progression in 597 AD patients where longitudinal cognitive measures are sufficient. Both the PICALM and CLU variants showed nominal significant association with cognitive decline as measured by change in Clinical Dementia Rating-sum of boxes (CDR-SB) score from the baseline but did not pass multiple-test correction. Future experiments will help us better understand potential roles of these genetic loci in AD pathology.


BEaST: brain extraction based on nonlocal segmentation technique.

  • Simon F Eskildsen‎ et al.
  • NeuroImage‎
  • 2012‎

Brain extraction is an important step in the analysis of brain images. The variability in brain morphology and the difference in intensity characteristics due to imaging sequences make the development of a general purpose brain extraction algorithm challenging. To address this issue, we propose a new robust method (BEaST) dedicated to produce consistent and accurate brain extraction. This method is based on nonlocal segmentation embedded in a multi-resolution framework. A library of 80 priors is semi-automatically constructed from the NIH-sponsored MRI study of normal brain development, the International Consortium for Brain Mapping, and the Alzheimer's Disease Neuroimaging Initiative databases. In testing, a mean Dice similarity coefficient of 0.9834±0.0053 was obtained when performing leave-one-out cross validation selecting only 20 priors from the library. Validation using the online Segmentation Validation Engine resulted in a top ranking position with a mean Dice coefficient of 0.9781±0.0047. Robustness of BEaST is demonstrated on all baseline ADNI data, resulting in a very low failure rate. The segmentation accuracy of the method is better than two widely used publicly available methods and recent state-of-the-art hybrid approaches. BEaST provides results comparable to a recent label fusion approach, while being 40 times faster and requiring a much smaller library of priors.


Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks.

  • Michel J Grothe‎ et al.
  • Human brain mapping‎
  • 2016‎

Recent neuroimaging studies of Alzheimer's disease (AD) have emphasized topographical similarities between AD-related brain changes and a prominent cortical association network called the default-mode network (DMN). However, the specificity of distinct imaging abnormalities for the DMN compared to other intrinsic connectivity networks (ICNs) of the limbic and heteromodal association cortex has not yet been examined systematically. We assessed regional amyloid load using AV45-PET, neuronal metabolism using FDG-PET, and gray matter volume using structural MRI in 473 participants from the Alzheimer's Disease Neuroimaging Initiative, including preclinical, predementia, and clinically manifest AD stages. Complementary region-of-interest and voxel-based analyses were used to assess disease stage- and modality-specific changes within seven principle ICNs of the human brain as defined by a standardized functional connectivity atlas. Amyloid deposition in AD dementia showed a preference for the DMN, but high effect sizes were also observed for other neocortical ICNs, most notably the frontoparietal-control network. Atrophic changes were most specific for an anterior limbic network, followed by the DMN, whereas other neocortical networks were relatively spared. Hypometabolism appeared to be a mixture of both amyloid- and atrophy-related profiles. Similar patterns of modality-dependent network specificity were also observed in the predementia and, for amyloid deposition, in the preclinical stage. These quantitative data confirm a high vulnerability of the DMN for multimodal imaging abnormalities in AD. However, rather than being selective for the DMN, imaging abnormalities more generally affect higher order cognitive networks and, importantly, the vulnerability profiles of these networks markedly differ for distinct aspects of AD pathology.


Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach.

  • Christian Salvatore‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

Determination of sensitive and specific markers of very early AD progression is intended to aid researchers and clinicians to develop new treatments and monitor their effectiveness, as well as to lessen the time and cost of clinical trials. Magnetic Resonance (MR)-related biomarkers have been recently identified by the use of machine learning methods for the in vivo differential diagnosis of AD. However, the vast majority of neuroimaging papers investigating this topic are focused on the difference between AD and patients with mild cognitive impairment (MCI), not considering the impact of MCI patients who will (MCIc) or not convert (MCInc) to AD. Morphological T1-weighted MRIs of 137 AD, 76 MCIc, 134 MCInc, and 162 healthy controls (CN) selected from the Alzheimer's disease neuroimaging initiative (ADNI) cohort, were used by an optimized machine learning algorithm. Voxels influencing the classification between these AD-related pre-clinical phases involved hippocampus, entorhinal cortex, basal ganglia, gyrus rectus, precuneus, and cerebellum, all critical regions known to be strongly involved in the pathophysiological mechanisms of AD. Classification accuracy was 76% AD vs. CN, 72% MCIc vs. CN, 66% MCIc vs. MCInc (nested 20-fold cross validation). Our data encourage the application of computer-based diagnosis in clinical practice of AD opening new prospective in the early management of AD patients.


Hippocampal transcriptome-guided genetic analysis of correlated episodic memory phenotypes in Alzheimer's disease.

  • Jingwen Yan‎ et al.
  • Frontiers in genetics‎
  • 2015‎

As the most common type of dementia, Alzheimer's disease (AD) is a neurodegenerative disorder initially manifested by impaired memory performances. While the diagnosis information indicates a dichotomous status of a patient, memory scores have the potential to capture the continuous nature of the disease progression and may provide more insights into the underlying mechanism. In this work, we performed a targeted genetic study of memory scores on an AD cohort to identify the associations between a set of genes highly expressed in the hippocampal region and seven cognitive scores related to episodic memory. Both main effects and interaction effects of the targeted genetic markers on these correlated memory scores were examined. In addition to well-known AD genetic markers APOE and TOMM40, our analysis identified a new risk gene NAV2 through the gene-level main effect analysis. NAV2 was found to be significantly and consistently associated with all seven episodic memory scores. Genetic interaction analysis also yielded a few promising hits warranting further investigation, especially for the RAVLT list B Score.


Bayesian segmentation of brainstem structures in MRI.

  • Juan Eugenio Iglesias‎ et al.
  • NeuroImage‎
  • 2015‎

In this paper we present a method to segment four brainstem structures (midbrain, pons, medulla oblongata and superior cerebellar peduncle) from 3D brain MRI scans. The segmentation method relies on a probabilistic atlas of the brainstem and its neighboring brain structures. To build the atlas, we combined a dataset of 39 scans with already existing manual delineations of the whole brainstem and a dataset of 10 scans in which the brainstem structures were manually labeled with a protocol that was specifically designed for this study. The resulting atlas can be used in a Bayesian framework to segment the brainstem structures in novel scans. Thanks to the generative nature of the scheme, the segmentation method is robust to changes in MRI contrast or acquisition hardware. Using cross validation, we show that the algorithm can segment the structures in previously unseen T1 and FLAIR scans with great accuracy (mean error under 1mm) and robustness (no failures in 383 scans including 168 AD cases). We also indirectly evaluate the algorithm with a experiment in which we study the atrophy of the brainstem in aging. The results show that, when used simultaneously, the volumes of the midbrain, pons and medulla are significantly more predictive of age than the volume of the entire brainstem, estimated as their sum. The results also demonstrate that the method can detect atrophy patterns in the brainstem structures that have been previously described in the literature. Finally, we demonstrate that the proposed algorithm is able to detect differential effects of AD on the brainstem structures. The method will be implemented as part of the popular neuroimaging package FreeSurfer.


Right anterior insula: core region of hallucinations in cognitive neurodegenerative diseases.

  • Frédéric Blanc‎ et al.
  • PloS one‎
  • 2014‎

We investigated the neural basis of hallucinations Alzheimer's disease (AD) by applying voxel-based morphometry (VBM) to anatomical and functional data from the AD Neuroimaging Initiative.


Diurnal fluctuations in brain volume: Statistical analyses of MRI from large populations.

  • Kunio Nakamura‎ et al.
  • NeuroImage‎
  • 2015‎

We investigated fluctuations in brain volume throughout the day using statistical modeling of magnetic resonance imaging (MRI) from large populations. We applied fully automated image analysis software to measure the brain parenchymal fraction (BPF), defined as the ratio of the brain parenchymal volume and intracranial volume, thus accounting for variations in head size. The MRI data came from serial scans of multiple sclerosis (MS) patients in clinical trials (n=755, 3269 scans) and from subjects participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI, n=834, 6114 scans). The percent change in BPF was modeled with a linear mixed effect (LME) model, and the model was applied separately to the MS and ADNI datasets. The LME model for the MS datasets included random subject effects (intercept and slope over time) and fixed effects for the time-of-day, time from the baseline scan, and trial, which accounted for trial-related effects (for example, different inclusion criteria and imaging protocol). The model for ADNI additionally included the demographics (baseline age, sex, subject type [normal, mild cognitive impairment, or Alzheimer's disease], and interaction between subject type and time from baseline). There was a statistically significant effect of time-of-day on the BPF change in MS clinical trial datasets (-0.180 per day, that is, 0.180% of intracranial volume, p=0.019) as well as the ADNI dataset (-0.438 per day, that is, 0.438% of intracranial volume, p<0.0001), showing that the brain volume is greater in the morning. Linearly correcting the BPF values with the time-of-day reduced the required sample size to detect a 25% treatment effect (80% power and 0.05 significance level) on change in brain volume from 2 time-points over a period of 1year by 2.6%. Our results have significant implications for future brain volumetric studies, suggesting that there is a potential acquisition time bias that should be randomized or statistically controlled to account for the day-to-day brain volume fluctuations.


Rich club analysis in the Alzheimer's disease connectome reveals a relatively undisturbed structural core network.

  • Madelaine Daianu‎ et al.
  • Human brain mapping‎
  • 2015‎

Diffusion imaging can assess the white matter connections within the brain, revealing how neural pathways break down in Alzheimer's disease (AD). We analyzed 3-Tesla whole-brain diffusion-weighted images from 202 participants scanned by the Alzheimer's Disease Neuroimaging Initiative-50 healthy controls, 110 with mild cognitive impairment (MCI) and 42 AD patients. From whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We tested whether AD disrupts the "rich club" - a network property where high-degree network nodes are more interconnected than expected by chance. We calculated the rich club properties at a range of degree thresholds, as well as other network topology measures including global degree, clustering coefficient, path length, and efficiency. Network disruptions predominated in the low-degree regions of the connectome in patients, relative to controls. The other metrics also showed alterations, suggesting a distinctive pattern of disruption in AD, less pronounced in MCI, targeting global brain connectivity, and focusing on more remotely connected nodes rather than the central core of the network. AD involves severely reduced structural connectivity; our step-wise rich club coefficients analyze points to disruptions predominantly in the peripheral network components; other modalities of data are needed to know if this indicates impaired communication among non rich club regions. The highly connected core was relatively preserved, offering new evidence on the neural basis of progressive risk for cognitive decline.


A Novel Texture Extraction Technique with T1 Weighted MRI for the Classification of Alzheimer's Disease.

  • Krishnakumar Vaithinathan‎ et al.
  • Journal of neuroscience methods‎
  • 2019‎

As the medical images contain both superficial and imperceptible patterns, textures are successfully used as discriminant features for the detection of cancers, tumors, etc. NEW METHOD: Our algorithm selects the specific image blocks and computes the textures using the following steps: At first, the center image slice of the axes (sagittal, coronal and axial) is divided into small blocks and those which approximately resembles the regions of interest are marked. Then, all the marked blocks which are in the same location as in the center slice are collected from all the other slices, and the textures are computed per block on all the individual slices. The generated textures are then pipelined to a feature selection algorithm with bootstrapping to pick-out features of high relevance and less redundancy and are exhaustively analyzed with multiple feature selection techniques like fisher score, elastic net, recursive feature elimination and classification algorithms like random forest, linear support vector machines, and k-nearest neighbors algorithms.


Spatial correlations exploitation based on nonlocal voxel-wise GWAS for biomarker detection of AD.

  • Meiyan Huang‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Potential biomarker detection is a crucial area of study for the prediction, diagnosis, and monitoring of Alzheimer's disease (AD). The voxelwise genome-wide association study (vGWAS) is widely used in imaging genomics studies that is usually applied to the detection of AD biomarkers in both imaging and genetic data. However, performing vGWAS remains a challenge because of the computational complexity of the technique and our ignorance of the spatial correlations within the imaging data. In this paper, we propose a novel method based on the exploitation of spatial correlations that may help to detect potential AD biomarkers using a fast vGWAS. To incorporate spatial correlations, we applied a nonlocal method that supposed that a given voxel could be represented by weighting the sum of the other voxels. Three commonly used weighting methods were adopted to calculate the weights among different voxels in this study. Then, a fast vGWAS approach was used to assess the association between the image and the genetic data. The proposed method was estimated using both simulated and real data. In the simulation studies, we designed a set of experiments to evaluate the effectiveness of the nonlocal method for incorporating spatial correlations in vGWAS. The experiments showed that incorporating spatial correlations by the nonlocal method could improve the detecting accuracy of AD biomarkers. For real data, we successfully identified three genes, namely, ANK3, MEIS2, and TLR4, which have significant associations with mental retardation, learning disabilities and age according to previous research. These genes have profound impacts on AD or other neurodegenerative diseases. Our results indicated that our method might be an effective and valuable tool for detecting potential biomarkers of AD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: