Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

Incorporation of concentration data below the limit of quantification in population pharmacokinetic analyses.

  • Ron J Keizer‎ et al.
  • Pharmacology research & perspectives‎
  • 2015‎

Handling of data below the lower limit of quantification (LLOQ), below the limit of quantification (BLOQ) in population pharmacokinetic (PopPK) analyses is important for reducing bias and imprecision in parameter estimation. We aimed to evaluate whether using the concentration data below the LLOQ has superior performance over several established methods. The performance of this approach ("All data") was evaluated and compared to other methods: "Discard," "LLOQ/2," and "LIKE" (likelihood-based). An analytical and residual error model was constructed on the basis of in-house analytical method validations and analyses from literature, with additional included variability to account for model misspecification. Simulation analyses were performed for various levels of BLOQ, several structural PopPK models, and additional influences. Performance was evaluated by relative root mean squared error (RMSE), and run success for the various BLOQ approaches. Performance was also evaluated for a real PopPK data set. For all PopPK models and levels of censoring, RMSE values were lowest using "All data." Performance of the "LIKE" method was better than the "LLOQ/2" or "Discard" method. Differences between all methods were small at the lowest level of BLOQ censoring. "LIKE" method resulted in low successful minimization (<50%) and covariance step success (<30%), although estimates were obtained in most runs (∼90%). For the real PK data set (7.4% BLOQ), similar parameter estimates were obtained using all methods. Incorporation of BLOQ concentrations showed superior performance in terms of bias and precision over established BLOQ methods, and shown to be feasible in a real PopPK analysis.


Neutropenia and docetaxel exposure in metastatic castration-resistant prostate cancer patients: A meta-analysis and evaluation of a clinical cohort.

  • Aurelia H M de Vries Schultink‎ et al.
  • Cancer medicine‎
  • 2019‎

The incidence of neutropenia in metastatic castration-resistant prostate cancer (mCRPC) patients treated with docetaxel has been reported to be lower compared to patients with other solid tumors treated with a similar dose. It is suggested that this is due to increased clearance of docetaxel in mCRPC patients, resulting in decreased exposure. The aims of this study were to (1) determine if exposure in mCRPC patients is lower vs patients with other solid tumors by conducting a meta-analysis, (2) evaluate the incidence of neutropenia in patients with mCRPC vs other solid tumors in a clinical cohort, and (3) discuss potential clinical consequences. A meta-analysis was conducted of studies which reported areas under the plasma concentration-time curves (AUCs) of docetaxel and variability. In addition, grade 3/4 neutropenia was evaluated using logistic regression in a cohort of patients treated with docetaxel. The meta-analysis included 36 cohorts from 26 trials (n = 1150 patients), and showed that patients with mCRPC had a significantly lower mean AUC vs patients with other solid tumors (fold change [95% confidence interval (CI)]: 1.8 [1.5-2.2]), with corresponding AUCs of 1.82 and 3.30 mg∙h/L, respectively. Logistic regression, including 812 patient, demonstrated that patients with mCRPC had a 2.2-fold lower odds of developing grade 3/4 neutropenia compared to patients with other solid tumors (odds ratio [95%CI]: 0.46 [0.31-0.90]). These findings indicate that mCRPC patients have a lower risk of experiencing severe neutropenia, possibly attributable to lower systemic exposure to docetaxel.


Impact of CYP3A4*22 on Pazopanib Pharmacokinetics in Cancer Patients.

  • Sander Bins‎ et al.
  • Clinical pharmacokinetics‎
  • 2019‎

As pazopanib plasma trough concentrations are correlated with treatment outcome, we explored whether single nucleotide polymorphisms in the elimination pathway of pazopanib affect systemic pazopanib concentrations.


Pharmacodynamic modeling of cardiac biomarkers in breast cancer patients treated with anthracycline and trastuzumab regimens.

  • Aurelia H M de Vries Schultink‎ et al.
  • Journal of pharmacokinetics and pharmacodynamics‎
  • 2018‎

Trastuzumab is associated with cardiotoxicity, manifesting as a decrease of the left-ventricular ejection fraction (LVEF). Administration of anthracyclines prior to trastuzumab increases risk of cardiotoxicity. High-sensitive troponin T and N-terminal-pro-brain natriuretic peptide (NT-proBNP) are molecular markers that may allow earlier detection of drug-induced cardiotoxicity. In this analysis we aimed to quantify the kinetics and exposure-response relationships of LVEF, troponin T and NT-proBNP measurements, in patients receiving anthracycline and trastuzumab. Repeated measurements of LVEF, troponin T and NT-proBNP and dosing records of anthracyclines and trastuzumab were available from a previously published clinical trial. This trial included 206 evaluable patients with early breast cancer. Exposure to anthracycline and trastuzumab was simulated based on available dosing records and by using a kinetic-pharmacodynamic (K-PD) and a fixed pharmacokinetic (PK) model from literature, respectively. The change from baseline troponin T was described with a direct effect model, affected by simulated anthracycline concentrations, representing myocyte damage. The relationship between trastuzumab and LVEF was described by an indirect effect compartment model. The EC50 for LVEF decline was significantly affected by the maximum troponin T concentration after anthracycline treatment, explaining 15.1% of inter-individual variability. In this cohort, NT-proBNP changes could not be demonstrated to be related to anthracycline or trastuzumab treatment. Pharmacodynamic models for troponin T and LVEF were successfully developed, identifying maximum troponin T concentration after anthracycline treatment as a significant determinant for trastuzumab-induced LVEF decline. These models can help identify patients at risk of drug-induced cardiotoxicity and optimize cardiac monitoring strategies.


Metoprolol-pridopidine drug-drug interaction and food effect assessments of pridopidine, a new drug for treatment of Huntington's disease.

  • Laura Rabinovich-Guilatt‎ et al.
  • British journal of clinical pharmacology‎
  • 2017‎

Pridopidine is an oral drug in clinical development for treatment of patients with Huntington's disease. This study examined the interactions of pridopidine with in vitro cytochrome P450 activity and characterized the effects of pridopidine on CYP2D6 activity in healthy volunteers using metoprolol as a probe substrate. The effect of food on pridopidine exposure was assessed.


Rethinking the Application of Pemetrexed for Patients with Renal Impairment: A Pharmacokinetic Analysis.

  • Nikki de Rouw‎ et al.
  • Clinical pharmacokinetics‎
  • 2021‎

Pemetrexed is used for the treatment for non-small cell lung cancer and mesothelioma. Patients with renal impairment are withheld treatment with this drug as it is unknown what dose is well tolerated in this population.


Pharmacokinetics of Deutetrabenazine and Tetrabenazine: Dose Proportionality and Food Effect.

  • Frank Schneider‎ et al.
  • Clinical pharmacology in drug development‎
  • 2021‎

Deutetrabenazine (Austedo, Teva), an approved treatment of chorea in Huntington's disease and tardive dyskinesia in adult patients, is a rationally designed deuterated form of tetrabenazine. Two studies assessed the pharmacokinetics and safety of deutetrabenazine compared with tetrabenazine, and the effects of food on absorption of the deuterated active metabolites, α-dihydrotetrabenazine (α-HTBZ) and β-dihydrotetrabenazine (β-HTBZ). One study was an open-label 2-part study in healthy volunteers; the first part included a crossover single dose of two 15 mg candidate deutetrabenazine formulations in fed and fasted states compared with tetrabenazine 25 mg in the fasted state, and the second part included single and repeated dosing of the commercial formulation of deutetrabenazine (7.5, 15, and 22.5 mg) compared with tetrabenazine 25 mg. The second study was an open-label 5-way crossover study in healthy volunteers (n = 32) to evaluate relative bioavailability of 4 dose levels of the commercial formulation of deutetrabenazine (6, 12, 18, and 24 mg) with a standard meal and 18 mg with a high-fat meal. Both studies confirmed longer half-lives for active metabolites and lower peak-to-trough fluctuations for the sum of the metabolites (total [α+β]-HTBZ) following deutetrabenazine compared with tetrabenazine (3- to 4-fold and 11-fold, respectively) in steady-state conditions. Deutetrabenazine doses estimated to provide total (α+β)-HTBZ exposure comparable to tetrabenazine 25 mg were 11.4-13.2 mg. Food had no effect on exposure to total (α+β)-HTBZ, as measured by AUC. Although the total (α+β)-HTBZ Cmax of deutetrabenazine was increased by ≈50% in the presence of food, it remained lower than that of tetrabenazine.


Pharmacokinetic and Metabolic Profile of Deutetrabenazine (TEV-50717) Compared With Tetrabenazine in Healthy Volunteers.

  • Frank Schneider‎ et al.
  • Clinical and translational science‎
  • 2020‎

Deutetrabenazine (Austedo, Teva Pharmaceuticals) is a deuterated form of tetrabenazine. It is the first deuterated drug to receive US regulatory approval and is approved for treatment of chorea in Huntington's disease and tardive dyskinesia. Two oral single dose studies comparing deutetrabenazine (25 mg) with tetrabenazine (25 mg) in healthy volunteers evaluated the impact of deuteration on pharmacokinetics of the active metabolites, alpha-dihydrotetrabenazine (α-HTBZ) and beta-dihydrotetrabenazine (β-HTBZ), metabolite profile, safety, and tolerability. In the two-way, cross-over study, the mean elimination half-life of deuterated total (α + β)-HTBZ was doubled compared with nondeuterated total (α + β)-HTBZ, with a twofold increase in overall mean exposure (area under the concentration-time curve from zero to infinity (AUC0-inf )) and a marginal increase in mean peak plasma concentration (Cmax ). In the mass balance and metabolite profiling study, there were no novel plasma or urinary metabolites of [14 C]-deutetrabenazine relative to [14 C]-tetrabenazine. Specific deuteration in deutetrabenazine resulted in a superior pharmacokinetic profile and an increased ratio of active-to-inactive metabolites, attributes considered to provide significant benefits to patients.


Pharmacokinetics, metabolism and safety of deuterated L-DOPA (SD-1077)/carbidopa compared to L-DOPA/carbidopa following single oral dose administration in healthy subjects.

  • Frank Schneider‎ et al.
  • British journal of clinical pharmacology‎
  • 2018‎

SD-1077, a selectively deuterated precursor of dopamine (DA) structurally related to L-3,4-dihydroxyphenylalanine (L-DOPA), is under development for treatment of motor symptoms of Parkinson's disease. Preclinical models have shown slower metabolism of central deuterated DA. The present study investigated the peripheral pharmacokinetics (PK), metabolism and safety of SD-1077.


A Review of CYP3A Drug-Drug Interaction Studies: Practical Guidelines for Patients Using Targeted Oral Anticancer Drugs.

  • Laura Molenaar-Kuijsten‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Many oral anticancer drugs are metabolized by CYP3A. Clinical drug-drug interaction (DDI) studies often only examine the effect of strong CYP3A inhibitors and inducers. The effect of moderate or weak inhibitors or inducers can be examined using physiologically based pharmacokinetic simulations, but data from these simulations are not always available early after approval of a drug. In this review we provide recommendations for clinical practice on how to deal with DDIs of oral anticancer drugs if only data from strong CYP3A inhibitors or inducers is available. These recommendations were based on reviewed data of oral anticancer drugs primarily metabolized by CYP3A and approved for the treatment of solid tumors from January 1st, 2013 to December 31st, 2015. In addition, three drugs that were registered before the new EMA guideline was issued (i.e., everolimus, imatinib, and sunitinib), were reviewed. DDIs are often complex, but if no data is available from moderate CYP3A inhibitors/inducers, a change in exposure of 50% compared with strong inhibitors/inducers can be assumed. No a priori dose adaptations are indicated for weak inhibitors/inducers, because their interacting effect is small. In case pharmacologically active metabolites are involved, the metabolic pathway, the ratio of the parent to the metabolites, and the potency of the metabolites should be taken into account.


Pharmacokinetic/Pharmacodynamic Modelling of Allopurinol, its Active Metabolite Oxypurinol, and Biomarkers Hypoxanthine, Xanthine and Uric Acid in Hypoxic-Ischemic Encephalopathy Neonates.

  • Wan-Yu Chu‎ et al.
  • Clinical pharmacokinetics‎
  • 2022‎

Allopurinol, an xanthine oxidase (XO) inhibitor, is a promising intervention that may provide neuroprotection for neonates with hypoxic-ischemic encephalopathy (HIE). Currently, a double-blind, placebo-controlled study (ALBINO, NCT03162653) is investigating the neuroprotective effect of allopurinol in HIE neonates.


Population Pharmacokinetic Modeling and Simulation of TV-46000: A Long-Acting Injectable Formulation of Risperidone.

  • Itay Perlstein‎ et al.
  • Clinical pharmacology in drug development‎
  • 2022‎

TV-46000 is a long-acting subcutaneous antipsychotic that uses a novel copolymer drug delivery technology in combination with a well-characterized molecule, risperidone, that is in clinical development as a treatment for schizophrenia. A population pharmacokinetic (PPK) modeling and simulation approach was implemented to identify TV-46000 doses and dosing schedules for clinical development that would provide the best balance between clinical efficacy and safety. The PPK model was created by applying pharmacokinetic data from a phase 1 study of 97 patients with a diagnosis of schizophrenia or schizoaffective disorder who received either single or repeated doses of TV-46000. The PPK model was used to characterize the complex release profile of the total active moiety (TAM; the sum of the risperidone and 9-OH risperidone concentrations) concentration following subcutaneous injections of TV-46000. The PK profile was best described by a double Weibull function of the in vivo release rate and by a 2-compartment disposition and elimination model. Simulations were performed to determine TV-46000 doses and dosing schedules that maintained a median profile of TAM concentrations similar to published TAM exposure following oral risperidone doses that have been correlated to a 40% to 80% dopamine-D2 receptor occupancy therapeutic window. The simulations showed that therapeutic dose ranges for TV-46000 are 50 to 125 mg for once-monthly and 100 to 250 mg for the once every 2 months regimens. This PPK model provided a basis for prediction of patient-specific exposure and dopamine-D2 receptor occupancy estimates to support further clinical development and dose selection for the phase 3 studies.


Practical Recommendations for the Manipulation of Kinase Inhibitor Formulations to Age-Appropriate Dosage Forms.

  • Emma C Bernsen‎ et al.
  • Pharmaceutics‎
  • 2022‎

Over 75 kinase inhibitors (KIs) have been approved for the treatment of various cancers. KIs are orally administrated but mostly lack pediatric age-appropriate dosage forms or instructions for dose manipulation. This is highly problematic for clinical practice in pediatric oncology, as flexible oral formulations are essential to individually set dosages and to adjust it to a child's swallowability. Most KIs are poorly soluble, categorized in Biopharmaceutics Classification System (BCS) class II or IV, and improperly manipulating the KI formulation can alter pharmacokinetics and jeopardize KI drug safety and efficacy. Therefore, the goals of this review were to provide practical recommendations for manipulating the formulation of the 15 most frequently used KIs in pediatric oncology (i.e., bosutinib, cabozantinib, cobimetinib, crizotinib, dabrafenib, dasatinib, entrectinib, imatinib, larotrectinib, nilotinib, ponatinib, ruxolitinib, selumetinib, sunitinib and trametinib) based on available literature studies and fundamental drug characteristics and to establish a decision tool that supports decisions regarding formulation manipulation of solid oral dosages of KIs that have been or will be licensed (for adult and/or pediatric cancers) but are not included in this review.


The association between skeletal muscle measures and chemotherapy-induced toxicity in non-small cell lung cancer patients.

  • Corine de Jong‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2022‎

Chemotherapy-induced toxicities frequently occur in non-small cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy. Low skeletal muscle mass (SMM) has been associated with a higher incidence of toxicities for several types of cancers and cytostatics. The aim of this study was to evaluate the association between skeletal muscle measures and chemotherapy-induced toxicity in a large cohort of NSCLC patients.


Plasma concentration guided dosing of drugs used for the treatment of childhood leukaemias: protocol for a systematic review.

  • Madelé van Dyk‎ et al.
  • BMJ open‎
  • 2022‎

Childhood leukaemia is the most common type of cancer in children and represents among 25% of the diagnoses in children <15 years old. Childhood survival rates have significantly improved within the last 40 years due to a rapid advancement in therapeutic interventions. However, in high-risk groups, survival rates remain poor. Pharmacokinetic (PK) data of cancer medications in children are limited and thus current dosing regimens are based on studies with small sample sizes. In adults, large variability in PK is observed and dose individualisation (plasma concentration guided dosing) has been associated with improved clinical outcomes; whether this is true for children is still unknown. This provides an opportunity to explore this strategy in children to potentially reduce toxicities and ensure optimal dosing. This paper will provide a protocol to systematically review studies that have used dose individualisation of drugs used in the treatment of childhood leukaemias.


Pharmacokinetics and Pharmacodynamics of PARP Inhibitors in Oncology.

  • Maaike A C Bruin‎ et al.
  • Clinical pharmacokinetics‎
  • 2022‎

Olaparib, niraparib, rucaparib, and talazoparib are poly (ADP-ribose) polymerase (PARP) inhibitors approved for the treatment of ovarian, breast, pancreatic, and/or prostate cancer. Poly (ADP-ribose) polymerase inhibitors are potent inhibitors of the PARP enzymes with comparable half-maximal inhibitory concentrations in the nanomolar range. Olaparib and rucaparib are orally dosed twice a day, extensively metabolized by cytochrome P450 enzymes, and inhibitors of several enzymes and drug transporters with a high risk for drug-drug interactions. Niraparib and talazoparib are orally dosed once a day with a lower risk for niraparib and a minimal risk for talazoparib to cause drug-drug interactions. All four PARP inhibitors show moderate-to-high interindividual variability in plasma exposure. Higher exposure is associated with an increase in toxicity, mostly hematological toxicity. For talazoparib, exposure-efficacy relationships have been described, but for olaparib, niraparib, and rucaparib this relationship remains inconclusive. Further studies are required to investigate exposure-response relationships to improve dosing of PARP inhibitors, in which therapeutic drug monitoring could play an important role. In this review, we give an overview of the pharmacokinetic properties of the four PARP inhibitors, including considerations for patients with renal dysfunction or hepatic impairment, the effect of food, and drug-drug interactions. Furthermore, we focus on the pharmacodynamics and summarize the available exposure-efficacy and exposure-toxicity relationships.


Current use and future potential of (physiologically based) pharmacokinetic modelling of radiopharmaceuticals: a review.

  • Hinke Siebinga‎ et al.
  • Theranostics‎
  • 2022‎

Rationale: Physiologically based pharmacokinetic (PBPK) and population pharmacokinetic (PK) modelling approaches are widely accepted in non-radiopharmaceutical drug development and research, while there is no major role for these approaches in radiopharmaceutical development yet. In this review, a literature search was performed to specify different research purposes and questions that have previously been answered using both PBPK and population PK modelling for radiopharmaceuticals. Methods: The literature search was performed using the databases PubMed and Embase. Wide search terms included radiopharmaceutical, tracer, radioactivity, physiologically based pharmacokinetic model, PBPK, population pharmacokinetic model and nonlinear mixed-effects model. Results: Eight articles and twenty articles were included for this review based on this literature search for population PK modelling and PBPK modelling, respectively. Included population PK analyses showed to have an added value to develop predictive models for a population and to describe individual variability sources. Main purposes of PBPK models appeared related to optimizing treatment (planning), or more specifically: to find the optimal combination of peptide amount and radioactivity, to optimize treatment planning by reducing the number of measurements, to individualize treatment, to get insights in differences between pre-therapeutic and therapeutic scans or to understand inter-patient differences. Other main research subjects were regarding radiopharmaceutical comparisons, selecting ligands based on their peptide characteristics and gaining a better understanding of drug-drug interactions. Conclusions: The use of PK modelling approaches in radiopharmaceutical research remains scarce, but can be expanded to obtain a better understanding of PK and whole-body distribution of radiopharmaceuticals in general. PK modelling of radiopharmaceuticals has great potential for the nearby future and could contribute to the evolving research of radiopharmaceuticals.


Translational PK-PD modeling analysis of MCLA-128, a HER2/HER3 bispecific monoclonal antibody, to predict clinical efficacious exposure and dose.

  • Aurelia H M de Vries Schultink‎ et al.
  • Investigational new drugs‎
  • 2018‎

Introduction MCLA-128 is a bispecific monoclonal antibody targeting the HER2 and HER3 receptors. Pharmacokinetics (PK) and pharmacodynamics (PD) of MCLA-128 have been evaluated in preclinical studies in cynomolgus monkeys and mice. The aim of this study was to characterize the PK and PD of MCLA-128 and to predict a safe starting dose and efficacious clinical dose for the First-In-Human study. Methods A PK-PD model was developed based on PK data from cynomolgus monkeys and tumor growth data from a mouse JIMT-1 xenograft model. Allometric scaling was used to scale PK parameters between species. Simulations were performed to predict the safe and efficacious clinical dose, based on AUCs, receptor occupancies and PK-PD model simulations. Results MCLA-128 PK in cynomolgus monkeys was described by a two-compartment model with parallel linear and nonlinear clearance. The xenograft tumor growth model consisted of a tumor compartment with a zero-order growth rate and a first-order dying rate, both affected by MCLA-128. Human doses of 10 to 480 mg q3wk were predicted to show a safety margin of >10-fold compared to the cynomolgus monkey AUC at the no-observed-adverse-effect-level (NOAEL). Doses of ≥360 mg resulted in predicted receptor occupancies above 99% (Cmax and Cave). These doses showed anti-tumor efficacy in the PK-PD model. Conclusions This analysis predicts that a flat dose of 10 to 480 mg q3wk is suitable as starting dose for a First-in-Human study with MCLA-128. Flat doses ≥360 mg q3wk are expected to be efficacious in human, based on receptor occupancies and PK-PD model simulations.


Lidocaine as treatment for neonatal seizures: Evaluation of previously developed population pharmacokinetic models and dosing regimen.

  • Laurent M A Favié‎ et al.
  • British journal of clinical pharmacology‎
  • 2020‎

Lidocaine is used to treat neonatal seizures refractory to other anticonvulsants. It is effective, but also associated with cardiac toxicity. Previous studies have reported on the pharmacokinetics of lidocaine in preterm and term neonates and proposed a dosing regimen for effective and safe lidocaine use. The objective of this study was to evaluate the previously developed pharmacokinetic models and dosing regimen. As a secondary objective, lidocaine effectiveness and safety were assessed.


Toxicological analysis of azide and cyanide for azide intoxications using gas chromatography.

  • Maaike A C Bruin‎ et al.
  • Basic & clinical pharmacology & toxicology‎
  • 2021‎

Azide is a highly toxic chemical agent to human being. Accidental, but also intentional exposure to azide occurs. To be able to confirm azide ingestion, we developed a method to identify and quantify azide in biological matrices. Cyanide was included in the method to evaluate suggested in vivo production of cyanide after azide ingestion. Azide in biological matrices was first derivatized by propionic anhydride to form propionyl azide. Simultaneously, cyanide was converted into hydrogen cyanide. After thermal rearrangement of propionyl azide, ethyl isocyanate was formed, separated together with hydrogen cyanide by gas chromatography (GC) and detected using a nitrogen phosphorous detector (NPD). The method was linear from 1.0-100 µg/mL for both analytes, and azide was stable in human plasma at -20°C for at least 49 days. Azide was measured in the gastric content of two cases of suspected azide ingestion (case 1:1.2 mg/mL, case 2:1.5 mg/mL). Cyanide was only identified in the gastric content of case 1 (approximately 1.4 µg/mL). Furthermore, azide was quantified in plasma (19 µg/mL), serum (24 µg/mL), cell pellet (21 µg/mL) and urine (3.0 µg/mL) of case 2. This method can be used to confirm azide and cyanide exposure, and azide concentrations can be quantified in several biological matrices.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: