Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Extracting drug-drug interaction from the biomedical literature using a stacked generalization-based approach.

  • Linna He‎ et al.
  • PloS one‎
  • 2013‎

Drug-drug interaction (DDI) detection is particularly important for patient safety. However, the amount of biomedical literature regarding drug interactions is increasing rapidly. Therefore, there is a need to develop an effective approach for the automatic extraction of DDI information from the biomedical literature. In this paper, we present a Stacked Generalization-based approach for automatic DDI extraction. The approach combines the feature-based, graph and tree kernels and, therefore, reduces the risk of missing important features. In addition, it introduces some domain knowledge based features (the keyword, semantic type, and DrugBank features) into the feature-based kernel, which contribute to the performance improvement. More specifically, the approach applies Stacked generalization to automatically learn the weights from the training data and assign them to three individual kernels to achieve a much better performance than each individual kernel. The experimental results show that our approach can achieve a better performance of 69.24% in F-score compared with other systems in the DDI Extraction 2011 challenge task.


Integrating various resources for gene name normalization.

  • Yuncui Hu‎ et al.
  • PloS one‎
  • 2012‎

The recognition and normalization of gene mentions in biomedical literature are crucial steps in biomedical text mining. We present a system for extracting gene names from biomedical literature and normalizing them to gene identifiers in databases. The system consists of four major components: gene name recognition, entity mapping, disambiguation and filtering. The first component is a gene name recognizer based on dictionary matching and semi-supervised learning, which utilizes the co-occurrence information of a large amount of unlabeled MEDLINE abstracts to enhance feature representation of gene named entities. In the stage of entity mapping, we combine the strategies of exact match and approximate match to establish linkage between gene names in the context and the EntrezGene database. For the gene names that map to more than one database identifiers, we develop a disambiguation method based on semantic similarity derived from the Gene Ontology and MEDLINE abstracts. To remove the noise produced in the previous steps, we design a filtering method based on the confidence scores in the dictionary used for NER. The system is able to adjust the trade-off between precision and recall based on the result of filtering. It achieves an F-measure of 83% (precision: 82.5% recall: 83.5%) on BioCreative II Gene Normalization (GN) dataset, which is comparable to the current state-of-the-art.


Identification of three Daphne species by DNA barcoding and HPLC fingerprint analysis.

  • Yanpeng Li‎ et al.
  • PloS one‎
  • 2018‎

In order to well identify the 93 wild Cortex Daphnes samples from different species and habitats in western China and develop a standard operating procedure (SOP) for the authentication and quality of them in the future, a comprehensive and efficient identification system based on DNA barcoding and HPLC fingerprint technologies has been developed. The result showed that only 17 samples (18%) were Daphne giraldii Nitsche (DG), which is recorded in Chinese Pharmacopeia, while the others (82%) might have safety hazards. Additionally, the result of HPLC fingerprint analysis indicated that samples in the same species origins and wild distributions could be clustered together, which was consistent with DNA barcoding analysis. The study can provide a significant system for the authentication and quality of commercial Cortex Daphnes herbs. Undoubtedly, this study undoubtedly confirmed that the chemical compositions of Cortex Daphnes herbs were affected by both species origins and ecological environments, which is required more in-depth research.


Human FasL gene is a target of β-catenin/T-cell factor pathway and complex FasL haplotypes alter promoter functions.

  • Jianming Wu‎ et al.
  • PloS one‎
  • 2011‎

FasL expression on human immune cells and cancer cells plays important roles in immune homeostasis and in cancer development. Our previous study suggests that polymorphisms in the FasL promoter can significantly affect the gene expression in human cells. In addition to the functional FasL SNP -844C>T (rs763110), three other SNPs (SNP -756A>G or rs2021837, SNP -478A>T or rs41309790, and SNP -205 C>G or rs74124371) exist in the proximal FasL promoter. In the current study, we established three major FasL hyplotypes in humans. Interestingly, a transcription motif search revealed that the FasL promoter possessed two consensus T-cell factor (TCF/LEF1) binding elements (TBEs), which is either polymorphic (SNP -205C>G) or close to the functional SNP -844C>T. Subsequently, we demonstrate that both FasL TBEs formed complexes with the TCF-4 and β-catenin transcription factors in vitro and in vivo. Co-transfection of LEF-1 and β-catenin transcription factors significantly increased FasL promoter activities, suggesting that FasL is a target gene of the β-catenin/T-cell factor pathway. More importantly, we found that the rare allele (-205G) of the polymorphic FasL TBE (SNP -205C>G) failed to bind the TCF-4 transcription factor and that SNP -205 C>G significantly affected the promoter activity. Furthermore, promoter reporter assays revealed that FasL SNP haplotypes influenced promoter activities in human colon cancer cells and in human T cells. Finally, β-catenin knockdown significantly decreased the FasL expression in human SW480 colon cancer cells. Collectively, our data suggest that β-catenin may be involved in FasL gene regulation and that FasL expression is influenced by FasL SNP haplotypes, which may have significant implications in immune response and tumorigenesis.


Quantitative Proteomics of Sleep-Deprived Mouse Brains Reveals Global Changes in Mitochondrial Proteins.

  • Jing Ren‎ et al.
  • PloS one‎
  • 2016‎

Sleep is a ubiquitous, tightly regulated, and evolutionarily conserved behavior observed in almost all animals. Prolonged sleep deprivation can be fatal, indicating that sleep is a physiological necessity. However, little is known about its core function. To gain insight into this mystery, we used advanced quantitative proteomics technology to survey the global changes in brain protein abundance. Aiming to gain a comprehensive profile, our proteomics workflow included filter-aided sample preparation (FASP), which increased the coverage of membrane proteins; tandem mass tag (TMT) labeling, for relative quantitation; and high resolution, high mass accuracy, high throughput mass spectrometry (MS). In total, we obtained the relative abundance ratios of 9888 proteins encoded by 6070 genes. Interestingly, we observed significant enrichment for mitochondrial proteins among the differentially expressed proteins. This finding suggests that sleep deprivation strongly affects signaling pathways that govern either energy metabolism or responses to mitochondrial stress. Additionally, the differentially-expressed proteins are enriched in pathways implicated in age-dependent neurodegenerative diseases, including Parkinson's, Huntington's, and Alzheimer's, hinting at possible connections between sleep loss, mitochondrial stress, and neurodegeneration.


Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil.

  • Linkun Wu‎ et al.
  • PloS one‎
  • 2011‎

The consecutive monoculture for most of medicinal plants, such as Rehmannia glutinosa, results in a significant reduction in the yield and quality. There is an urgent need to study for the sustainable development of Chinese herbaceous medicine.


Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum.

  • Qingchun Guo‎ et al.
  • PloS one‎
  • 2015‎

The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits.


Identity-by-descent mapping to detect rare variants conferring susceptibility to multiple sclerosis.

  • Rui Lin‎ et al.
  • PloS one‎
  • 2013‎

Genome-wide association studies (GWAS) have identified around 60 common variants associated with multiple sclerosis (MS), but these loci only explain a fraction of the heritability of MS. Some missing heritability may be caused by rare variants that have been suggested to play an important role in the aetiology of complex diseases such as MS. However current genetic and statistical methods for detecting rare variants are expensive and time consuming. 'Population-based linkage analysis' (PBLA) or so called identity-by-descent (IBD) mapping is a novel way to detect rare variants in extant GWAS datasets. We employed BEAGLE fastIBD to search for rare MS variants utilising IBD mapping in a large GWAS dataset of 3,543 cases and 5,898 controls. We identified a genome-wide significant linkage signal on chromosome 19 (LOD = 4.65; p = 1.9×10(-6)). Network analysis of cases and controls sharing haplotypes on chromosome 19 further strengthened the association as there are more large networks of cases sharing haplotypes than controls. This linkage region includes a cluster of zinc finger genes of unknown function. Analysis of genome wide transcriptome data suggests that genes in this zinc finger cluster may be involved in very early developmental regulation of the CNS. Our study also indicates that BEAGLE fastIBD allowed identification of rare variants in large unrelated population with moderate computational intensity. Even with the development of whole-genome sequencing, IBD mapping still may be a promising way to narrow down the region of interest for sequencing priority.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: