Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Evidence of involvement of the mannose receptor in the internalization of Streptococcus pneumoniae by Schwann cells.

  • Hugo Macedo-Ramos‎ et al.
  • BMC microbiology‎
  • 2014‎

The ability of S. pneumoniae to generate infections depends on the restrictions imposed by the host's immunity, in order to prevent the bacterium from spreading from the nasopharynx to other tissues, such as the brain. Some authors claim that strains of S. pneumoniae, which fail to survive in the bloodstream, can enter the brain directly from the nasal cavity by axonal transport through the olfactory and/or trigeminal nerves. However, from the immunological point of view, glial cells are far more responsive to bacterial infections than are neurons. This hypothesis is consistent with several recent reports showing that bacteria can infect glial cells from the olfactory bulb and trigeminal ganglia. Since our group previously demonstrated that Schwann cells (SCs) express a functional and appropriately regulated mannose receptor (MR), we decided to test whether SCs are involved in the internalization of S. pneumoniae via MR.


Donepezil rescues spatial learning and memory deficits following traumatic brain injury independent of its effects on neurogenesis.

  • Tzong-Shiue Yu‎ et al.
  • PloS one‎
  • 2015‎

Traumatic brain injury (TBI) is ubiquitous and effective treatments for it remain supportive largely due to uncertainty over how endogenous repair occurs. Recently, we demonstrated that hippocampal injury-induced neurogenesis is one mechanism underlying endogenous repair following TBI. Donepezil is associated with increased hippocampal neurogenesis and has long been known to improve certain aspects of cognition following many types of brain injury through unknown mechanisms. By coupling donepezil therapy with temporally regulated ablation of injury-induced neurogenesis using nestin-HSV transgenic mice, we investigated whether the pro-cognitive effects of donepezil following injury might occur through increasing neurogenesis. We demonstrate that donepezil itself enhances neurogenesis and improves cognitive function following TBI, even when injury-induced neurogenesis was inhibited. This suggests that the therapeutic effects of donepezil in TBI occur separately from its effects on neurogenesis.


Sparse Activity of Hippocampal Adult-Born Neurons during REM Sleep Is Necessary for Memory Consolidation.

  • Deependra Kumar‎ et al.
  • Neuron‎
  • 2020‎

The occurrence of dreaming during rapid eye movement (REM) sleep prompts interest in the role of REM sleep in hippocampal-dependent episodic memory. Within the mammalian hippocampus, the dentate gyrus (DG) has the unique characteristic of exhibiting neurogenesis persisting into adulthood. Despite their small numbers and sparse activity, adult-born neurons (ABNs) in the DG play critical roles in memory; however, their memory function during sleep is unknown. Here, we investigate whether young ABN activity contributes to memory consolidation during sleep using Ca2+ imaging in freely moving mice. We found that contextual fear learning recruits a population of young ABNs that are reactivated during subsequent REM sleep against a backdrop of overall reduced ABN activity. Optogenetic silencing of this sparse ABN activity during REM sleep alters the structural remodeling of spines on ABN dendrites and impairs memory consolidation. These findings provide a causal link between ABN activity during REM sleep and memory consolidation.


Inhibiting the Activity of CA1 Hippocampal Neurons Prevents the Recall of Contextual Fear Memory in Inducible ArchT Transgenic Mice.

  • Masanori Sakaguchi‎ et al.
  • PloS one‎
  • 2015‎

The optogenetic manipulation of light-activated ion-channels/pumps (i.e., opsins) can reversibly activate or suppress neuronal activity with precise temporal control. Therefore, optogenetic techniques hold great potential to establish causal relationships between specific neuronal circuits and their function in freely moving animals. Due to the critical role of the hippocampal CA1 region in memory function, we explored the possibility of targeting an inhibitory opsin, ArchT, to CA1 pyramidal neurons in mice. We established a transgenic mouse line in which tetracycline trans-activator induces ArchT expression. By crossing this line with a CaMKIIα-tTA transgenic line, the delivery of light via an implanted optrode inhibits the activity of excitatory CA1 neurons. We found that light delivery to the hippocampus inhibited the recall of a contextual fear memory. Our results demonstrate that this optogenetic mouse line can be used to investigate the neuronal circuits underlying behavior.


Calcium imaging of adult-born neurons in freely moving mice.

  • Alvaro Carrier-Ruiz‎ et al.
  • STAR protocols‎
  • 2021‎

Adult-born neurons (ABNs) in the dentate gyrus bestow unique cellular plasticity to the mammalian brain. We recently found that the activity of ABNs during sleep is necessary for memory consolidation. Here, we describe our method for Ca2+ imaging of ABN activity using a miniaturized fluorescent microscope and sleep recordings. As preparatory surgery and post-recording data processing can be major obstacles, we provide detailed descriptions and problem-solving tips. For complete details on the use and execution of this protocol, please refer to Kumar et al. (2020).


Fear generalization immediately after contextual fear memory consolidation in mice.

  • Jiahui Yu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Fear generalization is a symptom of anxiety-related disorders, including acute stress disorder and post-traumatic stress disorder. Using a contextual fear conditioning paradigm, we found that mice exposed to a similar neutral context but not a different neutral context soon after training showed fear generalization immediately after contextual fear memory consolidation (i.e., 6 h after training). This fear generalization was reflected by a change not only in the total amount but also the pattern of freezing between conditioned and generalized contexts. These results provide insight into the factors that influence fear generalization and can facilitate future studies investigating the underlying pathophysiological mechanisms of anxiety-related disorders.


Apolipoprotein E regulates the maturation of injury-induced adult-born hippocampal neurons following traumatic brain injury.

  • Yacine Tensaouti‎ et al.
  • PloS one‎
  • 2020‎

Various brain injuries lead to the activation of adult neural stem/progenitor cells in the mammalian hippocampus. Subsequent injury-induced neurogenesis appears to be essential for at least some aspects of the innate recovery in cognitive function observed following traumatic brain injury (TBI). It has previously been established that Apolipoprotein E (ApoE) plays a regulatory role in adult hippocampal neurogenesis, which is of particular interest as the presence of the human ApoE isoform ApoE4 leads to significant risk for the development of late-onset Alzheimer's disease, where impaired neurogenesis has been linked with disease progression. Moreover, genetically modified mice lacking ApoE or expressing the ApoE4 human isoform have been shown to impair adult hippocampal neurogenesis under normal conditions. Here, we investigate how controlled cortical impact (CCI) injury affects dentate gyrus development using hippocampal stereotactic injections of GFP-expressing retroviruses in wild-type (WT), ApoE-deficient and humanized (ApoE3 and ApoE4) mice. Infected adult-born hippocampal neurons were morphologically analyzed once fully mature, revealing significant attenuation of dendritic complexity and spine density in mice lacking ApoE or expressing the human ApoE4 allele, which may help inform how ApoE influences neurological diseases where neurogenesis is defective.


Progressive Changes in Sleep and Its Relations to Amyloid-β Distribution and Learning in Single App Knock-In Mice.

  • Sakura Eri B Maezono‎ et al.
  • eNeuro‎
  • 2020‎

Alzheimer's disease (AD) patients often suffer from sleep disturbances. Alterations in sleep, especially rapid eye movement sleep (REMS), can precede the onset of dementia. To accurately characterize the sleep impairments accompanying AD and their underlying mechanisms using animal models, it is crucial to use models in which brain areas are affected in a manner similar to that observed in the actual patients. Here, we focused on AppNL-G-F mice, in which expression levels and patterns of mutated amyloid precursor protein (APP) follow the endogenous patterns. We characterized the sleep architecture of male AppNL-G-F homozygous and heterozygous mice at two ages (six and 12 months). At six months, homozygous mice exhibited reduced REMS, which was further reduced at 12 months together with a slight reduction in non-REMS (NREMS). By contrast, heterozygous mice exhibited an overall normal sleep architecture. Homozygous mice also exhibited decreased electroencephalogram γ to δ power ratio during REMS from six months, resembling the electroencephalogram slowing phenomenon observed in preclinical or early stages of AD. In addition, homozygous mice showed learning and memory impairments in the trace fear conditioning (FC) at both ages, and task performance strongly correlated with REMS amount at 12 months. Finally, histologic analyses revealed that amyloid-β accumulation in the pontine tegmental area and ventral medulla followed a course similar to that of the REMS reduction. These findings support the notion that changes in REMS are an early marker of AD and provide a starting point to address the mechanism of sleep deficits in AD and the effects on cognition.


Impaired spatial and contextual memory formation in galectin-1 deficient mice.

  • Masanori Sakaguchi‎ et al.
  • Molecular brain‎
  • 2011‎

Galectins are a 15 member family of carbohydrate-binding proteins that have been implicated in cancer, immunity, inflammation and development. While galectins are expressed in the central nervous system, little is known about their function in the adult brain. Previously we have shown that galectin-1 (gal-1) is expressed in the adult hippocampus, and, in particular, in putative neural stem cells in the subgranular zone. To evaluate how gal-1 might contribute to hippocampal memory function here we studied galectin-1 null mutant (gal-1-/-) mice. Compared to their wildtype littermate controls, gal-1-/- mice exhibited impaired spatial learning in the water maze and contextual fear learning. Interestingly, tone fear conditioning was normal in gal-1-/- mice suggesting that loss of gal-1 might especially impact hippocampal learning and memory. Furthermore, gal-1-/- mice exhibited normal motor function, emotion and sensory processing in a battery of other behavioral tests, suggesting that non-mnemonic performance deficits are unlikely to account for the spatial and contextual learning deficits. Together, these data reveal a role for galectin-carbohydrate signalling in hippocampal memory function.


Galectin-1 is expressed in early-type neural progenitor cells and down-regulates neurogenesis in the adult hippocampus.

  • Yoichi Imaizumi‎ et al.
  • Molecular brain‎
  • 2011‎

In the adult mammalian brain, neural stem cells (NSCs) proliferate in the dentate gyrus (DG) of the hippocampus and generate new neurons throughout life. A multimodal protein, Galectin-1, is expressed in neural progenitor cells (NPCs) and implicated in the proliferation of the NPCs in the DG. However, little is known about its detailed expression profile in the NPCs and functions in adult neurogenesis in the DG.


Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region.

  • Yosuke Niibori‎ et al.
  • Nature communications‎
  • 2012‎

Different places may share common features, but are coded by distinct populations of CA3 neurons in the hippocampus. Here we show that chemical or genetic suppression of adult neurogenesis in the hippocampus impairs this population-based coding of similar (but not dissimilar) contexts. These data provide a neural basis for impaired spatial discrimination following ablation of adult neurogenesis, and support the proposal that adult neurogenesis regulates the efficiency of a pattern separation process in the hippocampus.


Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer's disease by compromising hippocampal inhibition.

  • Carolyn Hollands‎ et al.
  • Molecular neurodegeneration‎
  • 2017‎

The molecular mechanism underlying progressive memory loss in Alzheimer's disease is poorly understood. Neurogenesis in the adult hippocampus is a dynamic process that continuously changes the dentate gyrus and is important for hippocampal plasticity, learning and memory. However, whether impairments in neurogenesis affect the hippocampal circuitry in a way that leads to memory deficits characteristic of Alzheimer's disease is unknown. Controversial results in that regard were reported in transgenic mouse models of amyloidosis.


Adult newborn neurons interfere with fear discrimination in a protocol-dependent manner.

  • Tzong-Shiue Yu‎ et al.
  • Brain and behavior‎
  • 2017‎

Significant enhancement of neurogenesis is known to occur in response to a variety of brain insults such as traumatic brain injury. Previous studies have demonstrated that injury-induced newborn neurons are required for hippocampus-dependent spatial learning and memory tasks like the Morris water maze, but not in contextual fear conditioning that requires both the hippocampus and amygdala. Recently, the dentate gyrus, where adult hippocampal neurogenesis occurs, has been implicated in processing information to form specific memory under specific environmental stimuli in a process known as pattern separation.


Auditory conditioned stimulus presentation during NREM sleep impairs fear memory in mice.

  • Ross J Purple‎ et al.
  • Scientific reports‎
  • 2017‎

Externally manipulating memories by presenting conditioned stimuli (CS) during sleep is a new approach to investigating memory processing during sleep. However, whether presenting a CS during REM or NREM sleep enhances or extinguishes fear memory has not been clearly delineated. In this study, mice underwent trace fear conditioning consisting of an auditory CS paired with a foot shock, and the auditory CS was re-presented during subsequent REM or NREM sleep. Mice that received auditory cueing during NREM but not REM sleep showed impaired fear memory upon later presentation of the auditory CS. These findings have implications for the use of cueing during sleep and advance our understanding of the role of REM and NREM sleep in memory consolidation.


Adult medial habenula neurons require GDNF receptor GFRα1 for synaptic stability and function.

  • Diana Fernández-Suárez‎ et al.
  • PLoS biology‎
  • 2021‎

The medial habenula (mHb) is an understudied small brain nucleus linking forebrain and midbrain structures controlling anxiety and fear behaviors. The mechanisms that maintain the structural and functional integrity of mHb neurons and their synapses remain unknown. Using spatiotemporally controlled Cre-mediated recombination in adult mice, we found that the glial cell-derived neurotrophic factor receptor alpha 1 (GFRα1) is required in adult mHb neurons for synaptic stability and function. mHb neurons express some of the highest levels of GFRα1 in the mouse brain, and acute ablation of GFRα1 results in loss of septohabenular and habenulointerpeduncular glutamatergic synapses, with the remaining synapses displaying reduced numbers of presynaptic vesicles. Chemo- and optogenetic studies in mice lacking GFRα1 revealed impaired circuit connectivity, reduced AMPA receptor postsynaptic currents, and abnormally low rectification index (R.I.) of AMPARs, suggesting reduced Ca2+ permeability. Further biochemical and proximity ligation assay (PLA) studies defined the presence of GluA1/GluA2 (Ca2+ impermeable) as well as GluA1/GluA4 (Ca2+ permeable) AMPAR complexes in mHb neurons, as well as clear differences in the levels and association of AMPAR subunits with mHb neurons lacking GFRα1. Finally, acute loss of GFRα1 in adult mHb neurons reduced anxiety-like behavior and potentiated context-based fear responses, phenocopying the effects of lesions to septal projections to the mHb. These results uncover an unexpected function for GFRα1 in the maintenance and function of adult glutamatergic synapses and reveal a potential new mechanism for regulating synaptic plasticity in the septohabenulointerpeduncular pathway and attuning of anxiety and fear behaviors.


Real-time, automatic, open-source sleep stage classification system using single EEG for mice.

  • Taro Tezuka‎ et al.
  • Scientific reports‎
  • 2021‎

We developed a real-time sleep stage classification system with a convolutional neural network using only a one-channel electro-encephalogram source from mice and universally available features in any time-series data: raw signal, spectrum, and zeitgeber time. To accommodate historical information from each subject, we included a long short-term memory recurrent neural network in combination with the universal features. The resulting system (UTSN-L) achieved 90% overall accuracy and 81% multi-class Matthews Correlation Coefficient, with particularly high-quality judgements for rapid eye movement sleep (91% sensitivity and 98% specificity). This system can enable automatic real-time interventions during rapid eye movement sleep, which has been difficult due to its relatively low abundance and short duration. Further, it eliminates the need for ordinal pre-calibration, electromyogram recording, and manual classification and thus is scalable. The code is open-source with a graphical user interface and closed feedback loop capability, making it easily adaptable to a wide variety of end-user needs. By allowing large-scale, automatic, and real-time sleep stage-specific interventions, this system can aid further investigations of the functions of sleep and the development of new therapeutic strategies for sleep-related disorders.


Effect of context exposure after fear learning on memory generalization in mice.

  • Ayano Fujinaka‎ et al.
  • Molecular brain‎
  • 2016‎

The conditions under which memory generalization occurs are not well understood. Although it is believed that fear memory generalization is gradually established after learning, it is not clear whether experiences soon after learning affect generalization.


Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system.

  • Victor Tulio Ribeiro-Resende‎ et al.
  • Molecular neurodegeneration‎
  • 2012‎

Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC), satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2) is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS).


Remapping of Adult-Born Neuron Activity during Fear Memory Consolidation in Mice.

  • Pablo Vergara‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The mammalian hippocampal dentate gyrus is a unique memory circuit in which a subset of neurons is continuously generated throughout the lifespan. Previous studies have shown that the dentate gyrus neuronal population can hold fear memory traces (i.e., engrams) and that adult-born neurons (ABNs) support this process. However, it is unclear whether ABNs themselves hold fear memory traces. Therefore, we analyzed ABN activity at a population level across a fear conditioning paradigm. We found that fear learning did not recruit a distinct ABN population. In sharp contrast, a completely different ABN population was recruited during fear memory retrieval. We further provide evidence that ABN population activity remaps over time during the consolidation period. These results suggest that ABNs support the establishment of a fear memory trace in a different manner to directly holding the memory. Moreover, this activity remapping process in ABNs may support the segregation of memories formed at different times. These results provide new insight into the role of adult neurogenesis in the mammalian memory system.


Astrocytic ApoE underlies maturation of hippocampal neurons and cognitive recovery after traumatic brain injury in mice.

  • Tzong-Shiue Yu‎ et al.
  • Communications biology‎
  • 2021‎

Polymorphisms in the apolipoprotein E (ApoE) gene confer a major genetic risk for the development of late-onset Alzheimer's disease (AD) and are predictive of outcome following traumatic brain injury (TBI). Alterations in adult hippocampal neurogenesis have long been associated with both the development of AD and recovery following TBI and ApoE is known to play a role in this process. In order to determine how ApoE might influence hippocampal injury-induced neurogenesis, we generated a conditional knockout system whereby functional ApoE from astrocytes was ablated prior to injury. While successfully ablating ApoE just prior to TBI in mice, we observed an attenuation in the development of the spines in the newborn neurons. Intriguingly, animals with a double-hit, i.e. injury and ApoE conditionally inactivated in astrocytes, demonstrated the most pronounced impairments in the hippocampal-dependent Morris water maze test, failing to exhibit spatial memory after both acquisition and reversal training trials. In comparison, conditional knockout mice without injury displayed impairments but only in the reversal phase of the test, suggesting accumulative effects of astrocytic ApoE deficiency and traumatic brain injury on AD-like phenotypes. Together, these findings demonstrate that astrocytic ApoE is required for functional injury-induced neurogenesis following traumatic brain injury.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: