Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Replication of European hypertension associations in a case-control study of 9,534 African Americans.

  • Harpreet Kaur‎ et al.
  • PloS one‎
  • 2021‎

Hypertension is more prevalent in African Americans (AA) than other ethnic groups. Genome-wide association studies (GWAS) have identified loci associated with hypertension and other cardio-metabolic traits like type 2 diabetes, coronary artery disease, and body mass index (BMI), however the AA population is underrepresented in these studies. In this study, we examined a large AA cohort for the generalizability of 14 Metabochip array SNPs with previously reported European hypertension associations.


Prognostic biomarkers for predicting papillary thyroid carcinoma patients at high risk using nine genes of apoptotic pathway.

  • Chakit Arora‎ et al.
  • PloS one‎
  • 2021‎

Aberrant expressions of apoptotic genes have been associated with papillary thyroid carcinoma (PTC) in the past, however, their prognostic role and utility as biomarkers remains poorly understood. In this study, we analysed 505 PTC patients by employing Cox-PH regression techniques, prognostic index models and machine learning methods to elucidate the relationship between overall survival (OS) of PTC patients and 165 apoptosis related genes. It was observed that nine genes (ANXA1, TGFBR3, CLU, PSEN1, TNFRSF12A, GPX4, TIMP3, LEF1, BNIP3L) showed significant association with OS of PTC patients. Five out of nine genes were found to be positively correlated with OS of the patients, while the remaining four genes were negatively correlated. These genes were used for developing risk prediction models, which can be utilized to classify patients with a higher risk of death from the patients which have a good prognosis. Our voting-based model achieved highest performance (HR = 41.59, p = 3.36x10-4, C = 0.84, logrank-p = 3.8x10-8). The performance of voting-based model improved significantly when we used the age of patients with prognostic biomarker genes and achieved HR = 57.04 with p = 10-4 (C = 0.88, logrank-p = 1.44x10-9). We also developed classification models that can classify high risk patients (survival ≤ 6 years) and low risk patients (survival > 6 years). Our best model achieved AUROC of 0.92. Further, the expression pattern of the prognostic genes was verified at mRNA level, which showed their differential expression between normal and PTC samples. Also, the immunostaining results from HPA validated these findings. Since these genes can also be used as potential therapeutic targets in PTC, we also identified potential drug molecules which could modulate their expression profile. The study briefly revealed the key prognostic biomarker genes in the apoptotic pathway whose altered expression is associated with PTC progression and aggressiveness. In addition to this, risk assessment models proposed here can help in efficient management of PTC patients.


Understanding health care-seeking behaviour of the tribal population in India among those with presumptive TB symptoms.

  • Beena E Thomas‎ et al.
  • PloS one‎
  • 2021‎

Understanding the drivers for care-seeking among those who present with symptoms of TB is crucial for early diagnosis of TB and prompt treatment, which will in turn halt further TB transmission. While TB is a challenge among the tribal population, little is known about the care-seeking behaviour and the factors influencing care-seeking behaviour among the tribal population across India.


HIVsirDB: a database of HIV inhibiting siRNAs.

  • Atul Tyagi‎ et al.
  • PloS one‎
  • 2011‎

Human immunodeficiency virus (HIV) is responsible for millions of deaths every year. The current treatment involves the use of multiple antiretroviral agents that may harm patients due to their toxic nature. RNA interference (RNAi) is a potent candidate for the future treatment of HIV, uses short interfering RNA (siRNA/shRNA) for silencing HIV genes. In this study, attempts have been made to create a database HIVsirDB of siRNAs responsible for silencing HIV genes.


Effect of HDL-raising drugs on cardiovascular outcomes: a systematic review and meta-regression.

  • Navjot Kaur‎ et al.
  • PloS one‎
  • 2014‎

Substantial residual cardiovascular risk remains after optimal LDL lowering in patients of established coronary artery disease. A number of therapeutic agents that raise HDL-C have been tested in clinical trials to cover this risk. However, the results of clinical trials are conflicting.


Genetic variations of PIP4K2A confer vulnerability to poor antipsychotic response in severely ill schizophrenia patients.

  • Harpreet Kaur‎ et al.
  • PloS one‎
  • 2014‎

Literature suggests that disease severity and neurotransmitter signaling pathway genes can accurately identify antipsychotic response in schizophrenia patients. However, putative role of signaling molecules has not been tested in schizophrenia patients based on severity of illness, despite its biological plausibility. In the present study we investigated the possible association of polymorphisms from five candidate genes RGS4, SLC6A3, PIP4K2A, BDNF, PI4KA with response to antipsychotic in variably ill schizophrenia patients. Thus in present study, a total 53 SNPs on the basis of previous reports and functional grounds were examined for their association with antipsychotic response in 423 schizophrenia patients segregated into low and high severity groups. Additionally, haplotype, diplotype, multivariate logistic regression and multifactor-dimensionality reduction (MDR) analyses were performed. Furthermore, observed associations were investigated in atypical monotherapy (n = 355) and risperidone (n = 260) treated subgroups. All associations were estimated as odds ratio (OR) and 95% confidence interval (CI) and test for multiple corrections was applied. Single locus analysis showed significant association of nine variants from SLC6A3, PIP4K2A and BDNF genes with incomplete antipsychotic response in schizophrenia patients with high severity. We identified significant association of six marker diplotype ATTGCT/ATTGCT (rs746203-rs10828317-rs7094131-rs2296624-rs11013052-rs1409396) of PIP4K2A gene in incomplete responders (corrected p-value = 0.001; adjusted-OR = 3.19, 95%-CI = 1.46-6.98) with high severity. These associations were further observed in atypical monotherapy and risperidone sub-groups. MDR approach identified gene-gene interaction among BDNF_rs7103411-BDNF_rs1491851-SLC6A3_rs40184 in severely ill incomplete responders (OR = 7.91, 95%-CI = 4.08-15.36). While RGS4_rs2842026-SLC6A3_rs2975226 interacted synergistically in incomplete responders with low severity (OR = 4.09, 95%-CI = 2.09-8.02). Our findings provide strong evidence that diplotype ATTGCT/ATTGCT of PIP4K2A gene conferred approximately three-times higher incomplete responsiveness towards antipsychotics in severely ill patients. These results are consistent with the known role of phosphatidyl-inositol-signaling elements in antipsychotic action and outcome. Findings have implication for future molecular genetic studies as well as personalized medicine. However more work is warranted to elucidate underlying causal biological pathway.


Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro.

  • Nandita Sahana‎ et al.
  • PloS one‎
  • 2012‎

The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant-pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro - PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.


Improved method for linear B-cell epitope prediction using antigen's primary sequence.

  • Harinder Singh‎ et al.
  • PloS one‎
  • 2013‎

One of the major challenges in designing a peptide-based vaccine is the identification of antigenic regions in an antigen that can stimulate B-cell's response, also called B-cell epitopes. In the past, several methods have been developed for the prediction of conformational and linear (or continuous) B-cell epitopes. However, the existing methods for predicting linear B-cell epitopes are far from perfection. In this study, an attempt has been made to develop an improved method for predicting linear B-cell epitopes. We have retrieved experimentally validated B-cell epitopes as well as non B-cell epitopes from Immune Epitope Database and derived two types of datasets called Lbtope_Variable and Lbtope_Fixed length datasets. The Lbtope_Variable dataset contains 14876 B-cell epitope and 23321 non-epitopes of variable length where as Lbtope_Fixed length dataset contains 12063 B-cell epitopes and 20589 non-epitopes of fixed length. We also evaluated the performance of models on above datasets after removing highly identical peptides from the datasets. In addition, we have derived third dataset Lbtope_Confirm having 1042 epitopes and 1795 non-epitopes where each epitope or non-epitope has been experimentally validated in at least two studies. A number of models have been developed to discriminate epitopes and non-epitopes using different machine-learning techniques like Support Vector Machine, and K-Nearest Neighbor. We achieved accuracy from ∼54% to 86% using diverse s features like binary profile, dipeptide composition, AAP (amino acid pair) profile. In this study, for the first time experimentally validated non B-cell epitopes have been used for developing method for predicting linear B-cell epitopes. In previous studies, random peptides have been used as non B-cell epitopes. In order to provide service to scientific community, a web server LBtope has been developed for predicting and designing B-cell epitopes (http://crdd.osdd.net/raghava/lbtope/).


THPdb: Database of FDA-approved peptide and protein therapeutics.

  • Salman Sadullah Usmani‎ et al.
  • PloS one‎
  • 2017‎

THPdb (http://crdd.osdd.net/raghava/thpdb/) is a manually curated repository of Food and Drug Administration (FDA) approved therapeutic peptides and proteins. The information in THPdb has been compiled from 985 research publications, 70 patents and other resources like DrugBank. The current version of the database holds a total of 852 entries, providing comprehensive information on 239 US-FDA approved therapeutic peptides and proteins and their 380 drug variants. The information on each peptide and protein includes their sequences, chemical properties, composition, disease area, mode of activity, physical appearance, category or pharmacological class, pharmacodynamics, route of administration, toxicity, target of activity, etc. In addition, we have annotated the structure of most of the protein and peptides. A number of user-friendly tools have been integrated to facilitate easy browsing and data analysis. To assist scientific community, a web interface and mobile App have also been developed.


GlycoPP: a webserver for prediction of N- and O-glycosites in prokaryotic protein sequences.

  • Jagat S Chauhan‎ et al.
  • PloS one‎
  • 2012‎

Glycosylation is one of the most abundant post-translational modifications (PTMs) required for various structure/function modulations of proteins in a living cell. Although elucidated recently in prokaryotes, this type of PTM is present across all three domains of life. In prokaryotes, two types of protein glycan linkages are more widespread namely, N- linked, where a glycan moiety is attached to the amide group of Asn, and O- linked, where a glycan moiety is attached to the hydroxyl group of Ser/Thr/Tyr. For their biologically ubiquitous nature, significance, and technology applications, the study of prokaryotic glycoproteins is a fast emerging area of research. Here we describe new Support Vector Machine (SVM) based algorithms (models) developed for predicting glycosylated-residues (glycosites) with high accuracy in prokaryotic protein sequences. The models are based on binary profile of patterns, composition profile of patterns, and position-specific scoring matrix profile of patterns as training features. The study employ an extensive dataset of 107 N-linked and 116 O-linked glycosites extracted from 59 experimentally characterized glycoproteins of prokaryotes. This dataset includes validated N-glycosites from phyla Crenarchaeota, Euryarchaeota (domain Archaea), Proteobacteria (domain Bacteria) and validated O-glycosites from phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria (domain Bacteria). In view of the current understanding that glycosylation occurs on folded proteins in bacteria, hybrid models have been developed using information on predicted secondary structures and accessible surface area in various combinations with training features. Using these models, N-glycosites and O-glycosites could be predicted with an accuracy of 82.71% (MCC 0.65) and 73.71% (MCC 0.48), respectively. An evaluation of the best performing models with 28 independent prokaryotic glycoproteins confirms the suitability of these models in predicting N- and O-glycosites in potential glycoproteins from aforementioned organisms, with reasonably high confidence. A web server GlycoPP, implementing these models is available freely at http:/www.imtech.res.in/raghava/glycopp/.


Evaluation of protein dihedral angle prediction methods.

  • Harinder Singh‎ et al.
  • PloS one‎
  • 2014‎

Tertiary structure prediction of a protein from its amino acid sequence is one of the major challenges in the field of bioinformatics. Hierarchical approach is one of the persuasive techniques used for predicting protein tertiary structure, especially in the absence of homologous protein structures. In hierarchical approach, intermediate states are predicted like secondary structure, dihedral angles, Cα-Cα distance bounds, etc. These intermediate states are used to restraint the protein backbone and assist its correct folding. In the recent years, several methods have been developed for predicting dihedral angles of a protein, but it is difficult to conclude which method is better than others. In this study, we benchmarked the performance of dihedral prediction methods ANGLOR and SPINE X on various datasets, including independent datasets. TANGLE dihedral prediction method was not benchmarked (due to unavailability of its standalone) and was compared with SPINE X and ANGLOR on only ANGLOR dataset on which TANGLE has reported its results. It was observed that SPINE X performed better than ANGLOR and TANGLE, especially in case of prediction of dihedral angles of glycine and proline residues. The analysis suggested that angle shifting was the foremost reason of better performance of SPINE X. We further evaluated the performance of the methods on independent ccPDB30 dataset and observed that SPINE X performed better than ANGLOR.


A Platform for Designing Genome-Based Personalized Immunotherapy or Vaccine against Cancer.

  • Sudheer Gupta‎ et al.
  • PloS one‎
  • 2016‎

Due to advancement in sequencing technology, genomes of thousands of cancer tissues or cell-lines have been sequenced. Identification of cancer-specific epitopes or neoepitopes from cancer genomes is one of the major challenges in the field of immunotherapy or vaccine development. This paper describes a platform Cancertope, developed for designing genome-based immunotherapy or vaccine against a cancer cell. Broadly, the integrated resources on this platform are apportioned into three precise sections. First section explains a cancer-specific database of neoepitopes generated from genome of 905 cancer cell lines. This database harbors wide range of epitopes (e.g., B-cell, CD8+ T-cell, HLA class I, HLA class II) against 60 cancer-specific vaccine antigens. Second section describes a partially personalized module developed for predicting potential neoepitopes against a user-specific cancer genome. Finally, we describe a fully personalized module developed for identification of neoepitopes from genomes of cancerous and healthy cells of a cancer-patient. In order to assist the scientific community, wide range of tools are incorporated in this platform that includes screening of epitopes against human reference proteome (http://www.imtech.res.in/raghava/cancertope/).


Prediction of risk scores for colorectal cancer patients from the concentration of proteins involved in mitochondrial apoptotic pathway.

  • Anjali Lathwal‎ et al.
  • PloS one‎
  • 2019‎

One of the major challenges in managing the treatment of colorectal cancer (CRC) patients is to predict risk scores or level of risk for CRC patients. In past, several biomarkers, based on concentration of proteins involved in type-2/intrinsic/mitochondrial apoptotic pathway, have been identified for prognosis of colorectal cancer patients. Recently, a prognostic tool DR_MOMP has been developed that can discriminate high and low risk CRC patients with reasonably high accuracy (Hazard Ratio, HR = 5.24 and p-value = 0.0031). This prognostic tool showed an accuracy of 59.7% when used to predict favorable/unfavorable survival outcomes. In this study, we developed knowledge based models for predicting risk scores of CRC patients. Models were trained and evaluated on 134 stage III CRC patients. Firstly, we developed multiple linear regression based models using different techniques and achieved a maximum HR value of 6.34 with p-value = 0.0032 for a model developed using LassoLars technique. Secondly, models were developed using a parameter optimization technique and achieved a maximum HR value of 38.13 with p-value 0.0006. We also predicted favorable/unfavorable survival outcomes and achieved maximum prediction accuracy value of 71.64%. A further enhancement in the performance was observed if clinical factors are added to this model. Addition of age as a variable to the model improved the HR to 40.11 with p-value as 0.0003 and also boosted the accuracy to 73.13%. The performance of our models were evaluated using five-fold cross-validation technique. For providing service to the community we also developed a web server 'CRCRpred', to predict risk scores of CRC patients, which is freely available at https://webs.iiitd.edu.in/raghava/crcrpred.


In silico approaches for predicting the half-life of natural and modified peptides in blood.

  • Deepika Mathur‎ et al.
  • PloS one‎
  • 2018‎

This paper describes a web server developed for designing therapeutic peptides with desired half-life in blood. In this study, we used 163 natural and 98 modified peptides whose half-life has been determined experimentally in mammalian blood, for developing in silico models. Firstly, models have been developed on 261 peptides containing natural and modified residues, using different chemical descriptors. The best model using 43 PaDEL descriptors got a maximum correlation of 0.692 between the predicted and the actual half-life peptides. Secondly, models were developed on 163 natural peptides using amino acid composition feature of peptides and achieved a maximum correlation of 0.643. Thirdly, models were developed on 163 natural peptides using chemical descriptors and attained a maximum correlation of 0.743 using 45 selected PaDEL descriptors. In order to assist researchers in the prediction and designing of half-life of peptides, the models developed have been integrated into PlifePred web server (http://webs.iiitd.edu.in//raghava/plifepred/).


TumorHoPe: a database of tumor homing peptides.

  • Pallavi Kapoor‎ et al.
  • PloS one‎
  • 2012‎

Cancer is responsible for millions of immature deaths every year and is an economical burden on developing countries. One of the major challenges in the present era is to design drugs that can specifically target tumor cells not normal cells. In this context, tumor homing peptides have drawn much attention. These peptides are playing a vital role in delivering drugs in tumor tissues with high specificity. In order to provide service to scientific community, we have developed a database of tumor homing peptides called TumorHoPe.


Identification of mannose interacting residues using local composition.

  • Sandhya Agarwal‎ et al.
  • PloS one‎
  • 2011‎

Mannose binding proteins (MBPs) play a vital role in several biological functions such as defense mechanisms. These proteins bind to mannose on the surface of a wide range of pathogens and help in eliminating these pathogens from our body. Thus, it is important to identify mannose interacting residues (MIRs) in order to understand mechanism of recognition of pathogens by MBPs.


CyclinPred: a SVM-based method for predicting cyclin protein sequences.

  • Mridul K Kalita‎ et al.
  • PloS one‎
  • 2008‎

Functional annotation of protein sequences with low similarity to well characterized protein sequences is a major challenge of computational biology in the post genomic era. The cyclin protein family is once such important family of proteins which consists of sequences with low sequence similarity making discovery of novel cyclins and establishing orthologous relationships amongst the cyclins, a difficult task. The currently identified cyclin motifs and cyclin associated domains do not represent all of the identified and characterized cyclin sequences. We describe a Support Vector Machine (SVM) based classifier, CyclinPred, which can predict cyclin sequences with high efficiency. The SVM classifier was trained with features of selected cyclin and non cyclin protein sequences. The training features of the protein sequences include amino acid composition, dipeptide composition, secondary structure composition and PSI-BLAST generated Position Specific Scoring Matrix (PSSM) profiles. Results obtained from Leave-One-Out cross validation or jackknife test, self consistency and holdout tests prove that the SVM classifier trained with features of PSSM profile was more accurate than the classifiers based on either of the other features alone or hybrids of these features. A cyclin prediction server--CyclinPred has been setup based on SVM model trained with PSSM profiles. CyclinPred prediction results prove that the method may be used as a cyclin prediction tool, complementing conventional cyclin prediction methods.


Impact of cancer-associated mutations in Hsh155/SF3b1 HEAT repeats 9-12 on pre-mRNA splicing in Saccharomyces cerevisiae.

  • Harpreet Kaur‎ et al.
  • PloS one‎
  • 2020‎

Mutations in the splicing machinery have been implicated in a number of human diseases. Most notably, the U2 small nuclear ribonucleoprotein (snRNP) component SF3b1 has been found to be frequently mutated in blood cancers such as myelodysplastic syndromes (MDS). SF3b1 is a highly conserved HEAT repeat (HR)-containing protein and most of these blood cancer mutations cluster in a hot spot located in HR4-8. Recently, a second mutational hotspot has been identified in SF3b1 located in HR9-12 and is associated with acute myeloid leukemias, bladder urothelial carcinomas, and uterine corpus endometrial carcinomas. The consequences of these mutations on SF3b1 functions during splicing have not yet been tested. We incorporated the corresponding mutations into the yeast homolog of SF3b1 and tested their impact on splicing. We find that all of these HR9-12 mutations can support splicing in yeast, and this suggests that none of them are loss of function alleles in humans. The Hsh155V502F mutation alters splicing of several pre-mRNA reporters containing weak branch sites as well as a genetic interaction with Prp2 and physical interactions with Prp5 and Prp3. The ability of a single allele of Hsh155 to perturb interactions with multiple factors functioning at different stages of the splicing reaction suggests that some SF3b1-mutant disease phenotypes may have a complex origin on the spliceosome.


Expression based biomarkers and models to classify early and late-stage samples of Papillary Thyroid Carcinoma.

  • Sherry Bhalla‎ et al.
  • PloS one‎
  • 2020‎

Recently, the rise in the incidences of thyroid cancer worldwide renders it to be the sixth most common cancer among women. Commonly, Fine Needle Aspiration biopsy predominantly facilitates the diagnosis of the nature of thyroid nodules. However, it is inconsiderable in determining the tumor's state, i.e., benign or malignant. This study aims to identify the key RNA transcripts that can segregate the early and late-stage samples of Thyroid Carcinoma (THCA) using RNA expression profiles.


QSAR-based models for designing quinazoline/imidazothiazoles/pyrazolopyrimidines based inhibitors against wild and mutant EGFR.

  • Jagat Singh Chauhan‎ et al.
  • PloS one‎
  • 2014‎

Overexpression of EGFR is responsible for causing a number of cancers, including lung cancer as it activates various downstream signaling pathways. Thus, it is important to control EGFR function in order to treat the cancer patients. It is well established that inhibiting ATP binding within the EGFR kinase domain regulates its function. The existing quinazoline derivative based drugs used for treating lung cancer that inhibits the wild type of EGFR. In this study, we have made a systematic attempt to develop QSAR models for designing quinazoline derivatives that could inhibit wild EGFR and imidazothiazoles/pyrazolopyrimidines derivatives against mutant EGFR. In this study, three types of prediction methods have been developed to design inhibitors against EGFR (wild, mutant and both). First, we developed models for predicting inhibitors against wild type EGFR by training and testing on dataset containing 128 quinazoline based inhibitors. This dataset was divided into two subsets called wild_train and wild_valid containing 103 and 25 inhibitors respectively. The models were trained and tested on wild_train dataset while performance was evaluated on the wild_valid called validation dataset. We achieved a maximum correlation between predicted and experimentally determined inhibition (IC50) of 0.90 on validation dataset. Secondly, we developed models for predicting inhibitors against mutant EGFR (L858R) on mutant_train, and mutant_valid dataset and achieved a maximum correlation between 0.834 to 0.850 on these datasets. Finally, an integrated hybrid model has been developed on a dataset containing wild and mutant inhibitors and got maximum correlation between 0.761 to 0.850 on different datasets. In order to promote open source drug discovery, we developed a webserver for designing inhibitors against wild and mutant EGFR along with providing standalone (http://osddlinux.osdd.net/) and Galaxy (http://osddlinux.osdd.net:8001) version of software. We hope our webserver (http://crdd.osdd.net/oscadd/ntegfr/) will play a vital role in designing new anticancer drugs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: