Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Alveolar epithelial cell therapy with human cord blood-derived hematopoietic progenitor cells.

  • Monique E De Paepe‎ et al.
  • The American journal of pathology‎
  • 2011‎

The role of umbilical cord blood (CB)-derived stem cell therapy in neonatal lung injury remains undetermined. We investigated the capacity of human CB-derived CD34(+) hematopoietic progenitor cells to regenerate injured alveolar epithelium in newborn mice. Double-transgenic mice with doxycycline (Dox)-dependent lung-specific Fas ligand (FasL) overexpression, treated with Dox between embryonal day 15 and postnatal day 3, served as a model of neonatal lung injury. Single-transgenic non-Dox-responsive littermates were controls. CD34(+) cells (1 × 10(5) to 5 × 10(5)) were administered at postnatal day 5 by intranasal inoculation. Engraftment, respiratory epithelial differentiation, proliferation, and cell fusion were studied at 8 weeks after inoculation. Engrafted cells were readily detected in all recipients and showed a higher incidence of surfactant immunoreactivity and proliferative activity in FasL-overexpressing animals compared with non-FasL-injured littermates. Cord blood-derived cells surrounding surfactant-immunoreactive type II-like cells frequently showed a transitional phenotype between type II and type I cells and/or type I cell-specific podoplanin immunoreactivity. Lack of nuclear colocalization of human and murine genomic material suggested the absence of fusion. In conclusion, human CB-derived CD34(+) cells are capable of long-term pulmonary engraftment, replication, clonal expansion, and reconstitution of injured respiratory epithelium by fusion-independent mechanisms. Cord blood-derived surfactant-positive epithelial cells appear to act as progenitors of the distal respiratory unit, analogous to resident type II cells. Graft proliferation and alveolar epithelial differentiation are promoted by lung injury.


Effect of methylation of ionic liquids on the gas separation performance of ionic liquid/metal-organic framework composites.

  • Vahid Nozari‎ et al.
  • CrystEngComm‎
  • 2018‎

1-N-Butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], and its methylated form, 1-N-butyl-2,3-dimethylimidazolium hexafluorophosphate, [BMMIM][PF6], were incorporated into CuBTC to examine the effect of methylation of ionic liquids (ILs) on the gas separation performance of the corresponding IL/metal-organic framework (MOF) composites. Spectroscopic analysis revealed that the interactions of the methylated ILs with CuBTC were weaker compared to those of its non-methylated counterpart. Gas uptake measurements illustrated that this difference in the interactions influences the gas separation performance of the composites. Accordingly, the CO2/N2: 15/85 and CH4/N2: 50/50 selectivities increased by 37% and 60% for [BMMIM][PF6]/CuBTC and 34% and 50% for [BMIM][PF6]/CuBTC, respectively, compared to the corresponding selectivities of pristine CuBTC at 1000 mbar. The results revealed another structural parameter controlling the performance of the IL/MOF composites, a novel type of material with rapidly expanding application areas.


Prenatal exposure to maternal depression and anxiety on imprinted gene expression in placenta and infant neurodevelopment and growth.

  • Julia F Litzky‎ et al.
  • Pediatric research‎
  • 2018‎

BackgroundDepression and/or anxiety during pregnancy have been associated with impaired fetal growth and neurodevelopment. Because placental imprinted genes play a central role in fetal development and respond to environmental stressors, we hypothesized that imprinted gene expression would be affected by prenatal depression and anxiety.MethodsPlacental gene expression was compared between mothers with prenatal depression and/or anxiety/obsessive compulsive disorder/panic and control mothers without psychiatric history (n=458) in the Rhode Island Child Health Study.ResultsTwenty-nine genes were identified as being significantly differentially expressed between placentae from infants of mothers with both depression and anxiety (n=54), with depression (n=89), or who took perinatal psychiatric medications (n=29) and control mother/infant pairs, with most genes having decreased expression in the stressed group. Among placentae from infants of mothers with depression, we found no differences in expression by medication use, indicating that our results are related to the stressor rather than the treatments. We did not find any relationship between the stress-associated gene expression and neonatal neurodevelopment, as measured using the Neonatal Intensive Care Unit Network Neurobehavioral Scale.ConclusionsThis variation in expression may be part of an adaptive mechanism by which the placenta buffers the infant from the effects of maternal stress.


Dynamics of microRNAs in bull spermatozoa.

  • Aruna Govindaraju‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2012‎

MicroRNAs are small non-coding RNAs that regulate gene expression and thus play important roles in mammalian development. However, the comprehensive lists of microRNAs, as well as, molecular mechanisms by which microRNAs regulate gene expression during gamete and embryo development are poorly defined. The objectives of this study were to determine microRNAs in bull sperm and predict their functions.


HE4 (WFDC2) gene overexpression promotes ovarian tumor growth.

  • Richard G Moore‎ et al.
  • Scientific reports‎
  • 2014‎

Selective overexpression of Human epididymal secretory protein E4 (HE4) points to a role in ovarian cancer tumorigenesis but little is known about the role the HE4 gene or the gene product plays. Here we show that elevated HE4 serum levels correlate with chemoresistance and decreased survival rates in EOC patients. HE4 overexpression promoted xenograft tumor growth and chemoresistance against cisplatin in an animal model resulting in reduced survival rates. HE4 displayed responses to tumor microenvironment constituents and presented increased expression as well as nuclear translocation upon EGF, VEGF and Insulin treatment and nucleolar localization with Insulin treatment. HE4 interacts with EGFR, IGF1R, and transcription factor HIF1α. Constructs of antisense phosphorothio-oligonucleotides targeting HE4 arrested tumor growth in nude mice. Collectively these findings implicate increased HE4 expression as a molecular factor in ovarian cancer tumorigenesis. Selective targeting directed towards the HE4 protein demonstrates therapeutic benefits for the treatment of ovarian cancer.


In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta.

  • Charlotte S Wilhelm-Benartzi‎ et al.
  • Environmental health perspectives‎
  • 2012‎

Fetal programming describes the theory linking environmental conditions during embryonic and fetal development with risk of diseases later in life. Environmental insults in utero may lead to changes in epigenetic mechanisms potentially affecting fetal development.


An AP endonuclease 1-DNA polymerase beta complex: theoretical prediction of interacting surfaces.

  • Alexej Abyzov‎ et al.
  • PLoS computational biology‎
  • 2008‎

Abasic (AP) sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1) cleaves the phosphodiester backbone 5' to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-beta). While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-beta, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-beta based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-beta located downstream of APEX1 (3' to the damaged site) and three with pol-beta located upstream of APEX1 (5' to the damaged site). Molecular dynamics (MD) simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (approximately -10.0 kcal/mol) to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-beta at the 3'-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-beta in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-beta in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3' side. The method described here can be used for analysis in any DNA-metabolizing pathway where weak interactions are the principal mode of cross-talk among participants and co-crystal structures of the individual components are available.


Retained Acetylated Histone Four in Bull Sperm Associated With Fertility.

  • Muhammet Rasit Ugur‎ et al.
  • Frontiers in veterinary science‎
  • 2019‎

Bull fertility, ability of the sperm to fertilize and activate the egg and support embryo development, is vital for cattle reproduction and production. Even though majority of histones are replaced by protamines, some histones are retained in sperm. It is known that chromatin remodeling during spermatogenesis results in dynamic changes in sperm chromatin structure through post-translational modifications (PTM) of sperm histones, which are important for regulation of gene expression. However, amounts of sperm Histone 4 (H4), its acetylated form (H4 acetyl), and to what extent these molecular attributes influence sperm chromatin structure and bull fertility are unknown. These gaps in the knowledge base are important because they are preventing advances in the fundamental science of bovine male gamete and improvement of bull fertility. The objective of this study was to test the hypothesis that expression dynamics as well as PTM of sperm H4 are associated with bull fertility. Flow cytometry was utilized to quantify H4 and H4 acetylated form in sperm from seven high and seven low fertility Holstein bulls. The results indicated that the average number of cells with H4 or H4 acetyl expression in high and low fertility bull sperm were 34.6 ± 20.4, 1.88 ± 1.8, 15.2 ± 20.8, and 1.4 ± 1.2, respectively. However, the sperm enriched in both H4 and H4 acetyl were different between high and low fertility groups (3.5 ± 0.6; 1.8 ± 0.8; P = 0.043). The localization and detection of H4 and H4 acetylation were measured by immunocytochemistry which revealed that H4 and H4 acetylation were equally distributed in the sperm head of high and low fertility sires. Western blotting results confirmed the presence of the H4 and its acetylated form in the sperm. Bioinformatics studies demonstrated that H4 is highly conserved among mammalians, and have significant gene ontology on spermatogenesis, early embryo implantation, and sperm capacitation. The results are significant because it demonstrates the replacement of canonical histone H4 into modified H4 acetylation in sperm and regulate its dynamics which is crucial for bull fertility and reproductive biotechnology. These findings advance fundamental science of mammalian early development and reproductive biotechnology.


Enhanced Water Purification Performance of Ionic Liquid Impregnated Metal-Organic Framework: Dye Removal by [BMIM][PF6]/MIL-53(Al) Composite.

  • Safiyye Kavak‎ et al.
  • Frontiers in chemistry‎
  • 2020‎

We incorporated a water-stable ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], into a water-stable metal-organic framework (MOF), MIL-53(Al), to generate the [BMIM][PF6]/MIL-53(Al) composite. This composite was examined for water purification by studying its capacity for methylene blue (MB) and methyl orange (MO) removal from aqueous solutions having either single dye or a mixture of both. Data illustrated that the removal efficiency and the maximum adsorption capacity of MIL-53(Al) were increased several times upon [BMIM][PF6] incorporation. For instance, within 1 min, 10 mg of pristine MIL-53(Al) adsorbed 23.3% MB from 10 mg/L of MB solution, while [BMIM][PF6]/MIL-53(Al) composite was adsorbed 82.3% MB in an identical solution. In the case of MO, 10 mg of pristine MIL-53(Al) achieved 27.8 and 53.6% MO removal from 10 mg/L of MO solution, while [BMIM][PF6]/MIL-53(Al) composite removed 61.4 and 99.2% within 5 min and 3 h, respectively. Moreover, upon [BMIM][PF6] incorporation, the maximum MB and MO adsorption capacities of the pristine MOF were increased from 84.5 to 44 mg/g to 204.9 to 60 mg/g, respectively. The adsorption of dyes in pristine MIL-53(Al) and [BMIM][PF6]/MIL-53(Al) followed a pseudo-second-order kinetic model and a Langmuir isotherm model. In a mixture of both dyes, the IL/MOF composite showed a doubled MB selectivity after the IL incorporation. The composite was successfully regenerated at least two times after its use in water purification to remove MB, MO, and their mixtures. Infrared (IR) spectra indicated that the MB/MO adsorption occurs on [BMIM][PF6]/MIL-53(Al) by electrostatic interactions, hydrogen bonding, and π-π interactions. These results showed that [BMIM][PF6]/MIL-53(Al) composite is a highly promising material for efficient water purification.


Prenatal risk factors and neonatal DNA methylation in very preterm infants.

  • Marie Camerota‎ et al.
  • Clinical epigenetics‎
  • 2021‎

Prenatal risk factors are related to poor health and developmental outcomes for infants, potentially via epigenetic mechanisms. We tested associations between person-centered prenatal risk profiles, cumulative prenatal risk models, and epigenome-wide DNA methylation (DNAm) in very preterm neonates.


The Impact of Early Life Experiences and Gut Microbiota on Neurobehavioral Development in Preterm Infants: A Longitudinal Cohort Study.

  • Jie Chen‎ et al.
  • Microorganisms‎
  • 2023‎

The objective of this study is to investigate the impact of early life experiences and gut microbiota on neurobehavioral development in preterm infants during neonatal intensive care unit (NICU) hospitalization.


The Environmental Influences on Child Health Outcomes (ECHO)-Wide Cohort.

  • Emily A Knapp‎ et al.
  • American journal of epidemiology‎
  • 2023‎

The Environmental Influences on Child Health Outcomes (ECHO)-Wide Cohort Study (EWC), a collaborative research design comprising 69 cohorts in 31 consortia, was funded by the National Institutes of Health (NIH) in 2016 to improve children's health in the United States. The EWC harmonizes extant data and collects new data using a standardized protocol, the ECHO-Wide Cohort Data Collection Protocol (EWCP). EWCP visits occur at least once per life stage, but the frequency and timing of the visits vary across cohorts. As of March 4, 2022, the EWC cohorts contributed data from 60,553 children and consented 29,622 children for new EWCP data and biospecimen collection. The median (interquartile range) age of EWCP-enrolled children was 7.5 years (3.7-11.1). Surveys, interviews, standardized examinations, laboratory analyses, and medical record abstraction are used to obtain information in 5 main outcome areas: pre-, peri-, and postnatal outcomes; neurodevelopment; obesity; airways; and positive health. Exposures include factors at the level of place (e.g., air pollution, neighborhood socioeconomic status), family (e.g., parental mental health), and individuals (e.g., diet, genomics).


Targeted Sequencing and Meta-Analysis of Preterm Birth.

  • Alper Uzun‎ et al.
  • PloS one‎
  • 2016‎

Understanding the genetic contribution(s) to the risk of preterm birth may lead to the development of interventions for treatment, prediction and prevention. Twin studies suggest heritability of preterm birth is 36-40%. Large epidemiological analyses support a primary maternal origin for recurrence of preterm birth, with little effect of paternal or fetal genetic factors. We exploited an "extreme phenotype" of preterm birth to leverage the likelihood of genetic discovery. We compared variants identified by targeted sequencing of women with 2-3 generations of preterm birth with term controls without history of preterm birth. We used a meta-genomic, bi-clustering algorithm to identify gene sets coordinately associated with preterm birth. We identified 33 genes including 217 variants from 5 modules that were significantly different between cases and controls. The most frequently identified and connected genes in the exome library were IGF1, ATM and IQGAP2. Likewise, SOS1, RAF1 and AKT3 were most frequent in the haplotype library. Additionally, SERPINB8, AZU1 and WASF3 showed significant differences in abundance of variants in the univariate comparison of cases and controls. The biological processes impacted by these gene sets included: cell motility, migration and locomotion; response to glucocorticoid stimulus; signal transduction; metabolic regulation and control of apoptosis.


Structural and genomic variation in preterm birth.

  • Alper Uzun‎ et al.
  • Pediatric research‎
  • 2016‎

Runs of homozygosity (ROH) are consecutive homozygous genotypes, which may result from population inbreeding or consanguineous marriages. ROH enhance the expression of recessive traits.


Effects of Delayed Cord Clamping on 4-Month Ferritin Levels, Brain Myelin Content, and Neurodevelopment: A Randomized Controlled Trial.

  • Judith S Mercer‎ et al.
  • The Journal of pediatrics‎
  • 2018‎

To evaluate whether placental transfusion influences brain myelination at 4 months of age.


Toward Rational Design of Ionic Liquid/Metal-Organic Framework Composites: Effects of Interionic Interaction Energy.

  • Vahid Nozari‎ et al.
  • ACS omega‎
  • 2017‎

One of the structural factors controlling the extent of interactions between ionic liquids (ILs) and metal-organic frameworks (MOFs) in IL/MOF composites is elucidated. Results showed that the thermal stability limits and adsorption performances of the IL/MOF composites can be tuned by the interionic interaction energy of bulk ILs, which can be probed spectroscopically via C2H infrared stretching frequency.


Neurodevelopmental Outcomes of Neonates Randomized to Morphine or Methadone for Treatment of Neonatal Abstinence Syndrome.

  • Adam J Czynski‎ et al.
  • The Journal of pediatrics‎
  • 2020‎

To evaluate the effects of pharmacologic treatment of neonatal abstinence syndrome on neurodevelopmental outcome from a randomized, controlled trial.


Transcription Profiles Associated with Inducible Adhesion in Candida parapsilosis.

  • Joseph M Bliss‎ et al.
  • mSphere‎
  • 2021‎

Candida parapsilosis has emerged as a frequent cause of invasive candidiasis with increasing evidence of unique biological features relative to C. albicans As it adapts to conditions within a mammalian host, rapid changes in gene expression are necessary to facilitate colonization and persistence in this environment. Adhesion of the organism to biological surfaces is a key first step in this process and is the focus of this study. Building on previous observations showing the importance of a member of the ALS gene family in C. parapsilosis adhesion, three clinical isolates were cultured under two conditions that mimic the mammalian host and promote adhesion, incubation at 37°C in tissue culture medium 199 or in human plasma. Transcriptional profiles using RNA-seq were obtained in these adhesion-inducing conditions and compared to profiles following growth in yeast media that suppress adhesion to identify gene expression profiles associated with adhesion. Overall gene expression profiles among the three strains were similar in both adhesion-inducing conditions and distinct from adhesion-suppressing conditions. Pairwise analysis among the three growth conditions identified 133 genes that were differentially expressed at a cutoff of ±4-fold, with the most upregulated genes significantly enriched in iron acquisition and transmembrane transport, while the most downregulated genes were enriched in oxidation-reduction processes. Gene family enrichment analysis identified gene families with diverse functions that may have an important role in this important step for colonization and disease.IMPORTANCE Invasive Candida infections are frequent complications of the immunocompromised and are associated with substantive morbidity and mortality. Although C. albicans is the best-studied species, emerging infections by non-albicans Candida species have led to increased efforts to understand aspects of their pathogenesis that are unique from C. albicansC. parapsilosis is a frequent cause of invasive infections, particularly among premature infants. Recent efforts have identified important virulence mechanisms that have features distinct from C. albicansC. parapsilosis can exist outside a host environment and therefore requires rapid modifications when it encounters a mammalian host to prevent its clearance. An important first step in the process is adhesion to host surfaces. This work takes a global, nonbiased approach to investigate broad changes in gene expression that accompany efficient adhesion. As such, biological pathways and individual protein targets are identified that may be amenable to manipulation to reduce colonization and disease from this organism.


Polygenic risk scores and the need for pharmacotherapy in neonatal abstinence syndrome.

  • Shawana Bibi‎ et al.
  • Pediatric research‎
  • 2023‎

The aim of this study was to identify genetic variants associated with NAS through a genome-wide association study (GWAS) and estimate a Polygenic Risk Score (PRS) model for NAS.


Epigenetic variation in the mu-opioid receptor gene in infants with neonatal abstinence syndrome.

  • Elisha M Wachman‎ et al.
  • The Journal of pediatrics‎
  • 2014‎

Neonatal abstinence syndrome (NAS) from in utero opioid exposure is highly variable with genetic factors appearing to play an important role. Epigenetic changes in cytosine:guanine (CpG) dinucleotide methylation can occur after drug exposure and may help to explain NAS variability. We correlated DNA methylation levels in the mu-opioid receptor (OPRM1) promoter in opioid-exposed infants with NAS outcomes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: