Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Lung dendritic-cell metabolism underlies susceptibility to viral infection in diabetes.

  • Samuel Philip Nobs‎ et al.
  • Nature‎
  • 2023‎

People with diabetes feature a life-risking susceptibility to respiratory viral infection, including influenza and SARS-CoV-2 (ref. 1), whose mechanism remains unknown. In acquired and genetic mouse models of diabetes, induced with an acute pulmonary viral infection, we demonstrate that hyperglycaemia leads to impaired costimulatory molecule expression, antigen transport and T cell priming in distinct lung dendritic cell (DC) subsets, driving a defective antiviral adaptive immune response, delayed viral clearance and enhanced mortality. Mechanistically, hyperglycaemia induces an altered metabolic DC circuitry characterized by increased glucose-to-acetyl-CoA shunting and downstream histone acetylation, leading to global chromatin alterations. These, in turn, drive impaired expression of key DC effectors including central antigen presentation-related genes. Either glucose-lowering treatment or pharmacological modulation of histone acetylation rescues DC function and antiviral immunity. Collectively, we highlight a hyperglycaemia-driven metabolic-immune axis orchestrating DC dysfunction during pulmonary viral infection and identify metabolic checkpoints that may be therapeutically exploited in mitigating exacerbated disease in infected diabetics.


Accurate, model-based tuning of synthetic gene expression using introns in S. cerevisiae.

  • Ido Yofe‎ et al.
  • PLoS genetics‎
  • 2014‎

Introns are key regulators of eukaryotic gene expression and present a potentially powerful tool for the design of synthetic eukaryotic gene expression systems. However, intronic control over gene expression is governed by a multitude of complex, incompletely understood, regulatory mechanisms. Despite this lack of detailed mechanistic understanding, here we show how a relatively simple model enables accurate and predictable tuning of synthetic gene expression system in yeast using several predictive intron features such as transcript folding and sequence motifs. Using only natural Saccharomyces cerevisiae introns as regulators, we demonstrate fine and accurate control over gene expression spanning a 100 fold expression range. These results broaden the engineering toolbox of synthetic gene expression systems and provide a framework in which precise and robust tuning of gene expression is accomplished.


CD24 tracks divergent pluripotent states in mouse and human cells.

  • Nika Shakiba‎ et al.
  • Nature communications‎
  • 2015‎

Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture.


The Spectrum and Regulatory Landscape of Intestinal Innate Lymphoid Cells Are Shaped by the Microbiome.

  • Meital Gury-BenAri‎ et al.
  • Cell‎
  • 2016‎

Innate lymphoid cells (ILCs) are critical modulators of mucosal immunity, inflammation, and tissue homeostasis, but their full spectrum of cellular states and regulatory landscapes remains elusive. Here, we combine genome-wide RNA-seq, ChIP-seq, and ATAC-seq to compare the transcriptional and epigenetic identity of small intestinal ILCs, identifying thousands of distinct gene profiles and regulatory elements. Single-cell RNA-seq and flow and mass cytometry analyses reveal compartmentalization of cytokine expression and metabolic activity within the three classical ILC subtypes and highlight transcriptional states beyond the current canonical classification. In addition, using antibiotic intervention and germ-free mice, we characterize the effect of the microbiome on the ILC regulatory landscape and determine the response of ILCs to microbial colonization at the single-cell level. Together, our work characterizes the spectrum of transcriptional identities of small intestinal ILCs and describes how ILCs differentially integrate signals from the microbial microenvironment to generate phenotypic and functional plasticity.


Clonal hematopoiesis in the donor does not adversely affect long-term outcomes following allogeneic hematopoietic stem cell transplantation: result from a 13-year follow-up.

  • Kyoung Ha Kim‎ et al.
  • Haematologica‎
  • 2023‎

Donor clonal hematopoiesis may be transferred to the recipient through allogeneic hematopoietic stem cell transplantation (HSCT), but the potential for adverse long-term impact on transplant outcomes remains unknown. A total of 744 samples from 372 recipients who received HSCT and the corresponding donors were included. Bar-coded error-corrected sequencing using a modified molecular inversion probe capture protocol was performed, which targeted 33 genes covering mutations involved in clonal hematopoiesis with indeterminate potential (CHIP) and other acute myeloid leukemia-related mutations. A total of 30 mutations were detected from 25 donors (6.7%): the most frequently mutated gene was TET2 (n=7, 28%), followed by DNMT3A (n=4, 16%), SMC3 (n=3, 12%) and SF3B1 (n=3, 12%). With a median follow-up duration of 13 years among survivors, the presence of CHIP in the donor was not associated with recipient overall survival (P=0.969), relapse incidence (P=0.600) or non-relapse mortality (P=0.570). Donor CHIP did not impair neutrophil (P=0.460) or platelet (P=0.250) engraftment, the rates of acute (P=0.490), or chronic graft-versus-host disease (P=0.220). No significant difference was noted for secondary malignancy following HSCT between the two groups. The present study suggests that the presence of CHIP in allogeneic stem donors does not adversely affect transplant outcomes after HSCT. Accordingly, further study is warranted to reach a clearer conclusion on whether molecular profiling to determine the presence of CHIP mutations is necessary for the pretransplant evaluation of donors prior to stem cell donation.


Assessing Mucosal Inflammation in a DSS-Induced Colitis Mouse Model by MR Colonography.

  • Inbal E Biton‎ et al.
  • Tomography (Ann Arbor, Mich.)‎
  • 2018‎

Inflammatory bowel disease (IBD) is characterized by a chronic flaring inflammation of the gastrointestinal tract. To determine disease activity, the inflammatory state of the colon should be assessed. Endoscopy in patients with IBD aids visualization of mucosal inflammation. However, because the mucosa is fragile, there is a significant risk of perforation. In addition, the technique is based on grading of the entire colon, which is highly operator-dependent. An improved, noninvasive, objective magnetic resonance imaging (MRI) technique will effectively assess pathologies in the small intestinal mucosa, more specifically, along the colon, and the bowel wall and surrounding structures. Here, dextran sodium sulfate polymer induced acute colitis in mice that was subsequently characterized by multisection magnetic resonance colonography. This study aimed to develop a noninvasive, objective, quantitative MRI technique for detecting mucosal inflammation in a dextran sodium sulfate-induced colitis mouse model. MRI results were correlated with endoscopic and histopathological evaluations.


Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation.

  • Sara Federici‎ et al.
  • Cell‎
  • 2022‎

Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation. Stepwise generation of a lytic five-phage combination, targeting sensitive and resistant IBD-associated Kp clade members through distinct mechanisms, enables effective Kp suppression in colitis-prone mice, driving an attenuated inflammation and disease severity. Proof-of-concept assessment of Kp-targeting phages in an artificial human gut and in healthy volunteers demonstrates gastric acid-dependent phage resilience, safety, and viability in the lower gut. Collectively, we demonstrate the feasibility of orally administered combination phage therapy in avoiding resistance, while effectively inhibiting non-communicable disease-contributing pathobionts.


Man made disease: clinical manifestations of low phenylalanine levels in an inadequately treated phenylketonuria patient and mouse study.

  • Ben Pode-Shakked‎ et al.
  • Molecular genetics and metabolism‎
  • 2013‎

Phenylalanine (Phe) deficiency and its clinical manifestations have been previously described mostly as sporadic case reports dating back to the 1960's and 1970's. In these reports, low plasma Phe levels were associated with listlessness, eczematous eruptions and failure to gain weight, most often in infants in their first year of life.


CRFR1 in AgRP Neurons Modulates Sympathetic Nervous System Activity to Adapt to Cold Stress and Fasting.

  • Yael Kuperman‎ et al.
  • Cell metabolism‎
  • 2016‎

Signaling by the corticotropin-releasing factor receptor type 1 (CRFR1) plays an important role in mediating the autonomic response to stressful challenges. Multiple hypothalamic nuclei regulate sympathetic outflow. Although CRFR1 is highly expressed in the arcuate nucleus (Arc) of the hypothalamus, the identity of these neurons and the role of CRFR1 here are presently unknown. Our studies show that nearly half of Arc-CRFR1 neurons coexpress agouti-related peptide (AgRP), half of which originate from POMC precursors. Arc-CRFR1 neurons are innervated by CRF neurons in the hypothalamic paraventricular nucleus, and CRF application decreases AgRP(+)CRFR1(+) neurons' excitability. Despite similar anatomy in both sexes, only female mice selectively lacking CRFR1 in AgRP neurons showed a maladaptive thermogenic response to cold and reduced hepatic glucose production during fasting. Thus, CRFR1, in a subset of AgRP neurons, plays a regulatory role that enables appropriate sympathetic nervous system activation and consequently protects the organism from hypothermia and hypoglycemia.


Genomic variability within an organism exposes its cell lineage tree.

  • Dan Frumkin‎ et al.
  • PLoS computational biology‎
  • 2005‎

What is the lineage relation among the cells of an organism? The answer is sought by developmental biology, immunology, stem cell research, brain research, and cancer research, yet complete cell lineage trees have been reconstructed only for simple organisms such as Caenorhabditis elegans. We discovered that somatic mutations accumulated during normal development of a higher organism implicitly encode its entire cell lineage tree with very high precision. Our mathematical analysis of known mutation rates in microsatellites (MSs) shows that the entire cell lineage tree of a human embryo, or a mouse, in which no cell is a descendent of more than 40 divisions, can be reconstructed from information on somatic MS mutations alone with no errors, with probability greater than 99.95%. Analyzing all approximately 1.5 million MSs of each cell of an organism may not be practical at present, but we also show that in a genetically unstable organism, analyzing only a few hundred MSs may suffice to reconstruct portions of its cell lineage tree. We demonstrate the utility of the approach by reconstructing cell lineage trees from DNA samples of a human cell line displaying MS instability. Our discovery and its associated procedure, which we have automated, may point the way to a future "Human Cell Lineage Project" that would aim to resolve fundamental open questions in biology and medicine by reconstructing ever larger portions of the human cell lineage tree.


Identification of CTCF as a master regulator of the clustered protocadherin genes.

  • Michal Golan-Mashiach‎ et al.
  • Nucleic acids research‎
  • 2012‎

The brain is a large and complex network of neurons. Specific neuronal connectivity is thought to be based on the combinatorial expression of the 52 protocadherins (Pcdh) membrane adhesion proteins, whereby each neuron expresses only a specific subset. Pcdh genes are arranged in tandem, in a cluster of three families: Pcdhα, Pcdhβ and Pcdhγ. The expression of each Pcdh gene is regulated by a promoter that has a regulatory conserved sequence element (CSE), common to all 52 genes. The mechanism and factors controlling individual Pcdh gene expression are currently unknown. Here we show that the promoter of each Pcdh gene contains a gene-specific conserved control region, termed specific sequence element (SSE), located adjacent and upstream to the CSE and activates transcription together with the CSE. We purified the complex that specifically binds the SSE-CSE region and identified the CCTC binding-factor (CTCF) as a key molecule that binds and activates Pcdh promoters. Our findings point to CTCF as a factor essential for Pcdh expression and probably governing neuronal connectivity.


A library of programmable DNAzymes that operate in a cellular environment.

  • Maya Kahan-Hanum‎ et al.
  • Scientific reports‎
  • 2013‎

DNAzymes were used as inhibitory agents in a variety of experimental disease settings, such as cancer, viral infections and even HIV. Drugs that become active only upon the presence of preprogrammed abnormal environmental conditions may enable selective molecular therapy by targeting abnormal cells without injuring normal cells. Here we show a novel programmable DNAzyme library composed of variety of Boolean logic gates, including YES, AND, NOT, OR, NAND, ANDNOT, XOR, NOR and 3-input-AND gate, that uses both miRNAs and mRNAs as inputs. Each gate is based on the c-jun cleaving Dz13 DNAzyme and active only in the presence of specific input combinations. The library is modular, supports arbitrary inputs and outputs, cascadable, highly specific and robust. We demonstrate the library's potential diagnostic abilities on miRNA and mRNA combinations in cell lysate and its ability to operate in a cellular environment by using beacon-like c-jun mimicking substrate in living mammalian cells.


Recursive construction of perfect DNA molecules from imperfect oligonucleotides.

  • Gregory Linshiz‎ et al.
  • Molecular systems biology‎
  • 2008‎

Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time how recursion can be used to address this challenge and demonstrate a recursive procedure that constructs error-free DNA molecules and their libraries from error-prone oligonucleotides. Divide and Conquer (D&C), the quintessential recursive problem-solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error-prone oligonucleotides are recursively combined in vitro, forming error-prone DNA molecules; error-free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error-free target molecule is formed. Our recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed, precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the design and construction of synthetic biological molecules and organisms.


Reconstruction of cell lineage trees in mice.

  • Adam Wasserstrom‎ et al.
  • PloS one‎
  • 2008‎

The cell lineage tree of a multicellular organism represents its history of cell divisions from the very first cell, the zygote. A new method for high-resolution reconstruction of parts of such cell lineage trees was recently developed based on phylogenetic analysis of somatic mutations accumulated during normal development of an organism. In this study we apply this method in mice to reconstruct the lineage trees of distinct cell types. We address for the first time basic questions in developmental biology of higher organisms, namely what is the correlation between the lineage relation among cells and their (1) function, (2) physical proximity and (3) anatomical proximity. We analyzed B-cells, kidney-, mesenchymal- and hematopoietic-stem cells, as well as satellite cells, which are adult skeletal muscle stem cells isolated from their niche on the muscle fibers (myofibers) from various skeletal muscles. Our results demonstrate that all analyzed cell types are intermingled in the lineage tree, indicating that none of these cell types are single exclusive clones. We also show a significant correlation between the physical proximity of satellite cells within muscles and their lineage. Furthermore, we show that satellite cells obtained from a single myofiber are significantly clustered in the lineage tree, reflecting their common developmental origin. Lineage analysis based on somatic mutations enables performing high resolution reconstruction of lineage trees in mice and humans, which can provide fundamental insights to many aspects of their development and tissue maintenance.


Comparison of seven single cell whole genome amplification commercial kits using targeted sequencing.

  • Tamir Biezuner‎ et al.
  • Scientific reports‎
  • 2021‎

Advances in whole genome amplification (WGA) techniques enable understanding of the genomic sequence at a single cell level. Demand for single cell dedicated WGA kits (scWGA) has led to the development of several commercial kit. To this point, no robust comparison of all available kits was performed. Here, we benchmark an economical assay, comparing all commercially available scWGA kits. Our comparison is based on targeted sequencing of thousands of genomic loci, including highly mutable regions, from a large cohort of human single cells. Using this approach we have demonstrated the superiority of Ampli1 in genome coverage and of RepliG in reduced error rate. In summary, we show that no single kit is optimal across all categories, highlighting the need for a dedicated kit selection in accordance with experimental requirements.


Induction of Nitric-Oxide Metabolism in Enterocytes Alleviates Colitis and Inflammation-Associated Colon Cancer.

  • Noa Stettner‎ et al.
  • Cell reports‎
  • 2018‎

Nitric oxide (NO) plays an established role in numerous physiological and pathological processes, but the specific cellular sources of NO in disease pathogenesis remain unclear, preventing the implementation of NO-related therapy. Argininosuccinate lyase (ASL) is the only enzyme able to produce arginine, the substrate for NO generation by nitric oxide synthase (NOS) isoforms. Here, we generated cell-specific conditional ASL knockout mice in combination with genetic and chemical colitis models. We demonstrate that NO derived from enterocytes alleviates colitis by decreasing macrophage infiltration and tissue damage, whereas immune cell-derived NO is associated with macrophage activation, resulting in increased severity of inflammation. We find that induction of endogenous NO production by enterocytes with supplements that upregulate ASL expression and complement its substrates results in improved epithelial integrity and alleviation of colitis and of inflammation-associated colon cancer.


Cell lineage analysis of the mammalian female germline.

  • Yitzhak Reizel‎ et al.
  • PLoS genetics‎
  • 2012‎

Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.


Colon stem cell and crypt dynamics exposed by cell lineage reconstruction.

  • Yitzhak Reizel‎ et al.
  • PLoS genetics‎
  • 2011‎

Stem cell dynamics in vivo are often being studied by lineage tracing methods. Our laboratory has previously developed a retrospective method for reconstructing cell lineage trees from somatic mutations accumulated in microsatellites. This method was applied here to explore different aspects of stem cell dynamics in the mouse colon without the use of stem cell markers. We first demonstrated the reliability of our method for the study of stem cells by confirming previously established facts, and then we addressed open questions. Our findings confirmed that colon crypts are monoclonal and that, throughout adulthood, the process of monoclonal conversion plays a major role in the maintenance of crypts. The absence of immortal strand mechanism in crypts stem cells was validated by the age-dependent accumulation of microsatellite mutations. In addition, we confirmed the positive correlation between physical and lineage proximity of crypts, by showing that the colon is separated into small domains that share a common ancestor. We gained new data demonstrating that colon epithelium is clustered separately from hematopoietic and other cell types, indicating that the colon is constituted of few progenitors and ruling out significant renewal of colonic epithelium from hematopoietic cells during adulthood. Overall, our study demonstrates the reliability of cell lineage reconstruction for the study of stem cell dynamics, and it further addresses open questions in colon stem cells. In addition, this method can be applied to study stem cell dynamics in other systems.


Recurrent deletions in clonal hematopoiesis are driven by microhomology-mediated end joining.

  • Tzah Feldman‎ et al.
  • Nature communications‎
  • 2021‎

The mutational mechanisms underlying recurrent deletions in clonal hematopoiesis are not entirely clear. In the current study we inspect the genomic regions around recurrent deletions in myeloid malignancies, and identify microhomology-based signatures in CALR, ASXL1 and SRSF2 loci. We demonstrate that these deletions are the result of double stand break repair by a PARP1 dependent microhomology-mediated end joining (MMEJ) pathway. Importantly, we provide evidence that these recurrent deletions originate in pre-leukemic stem cells. While DNA polymerase theta (POLQ) is considered a key component in MMEJ repair, we provide evidence that pre-leukemic MMEJ (preL-MMEJ) deletions can be generated in POLQ knockout cells. In contrast, aphidicolin (an inhibitor of replicative polymerases and replication) treatment resulted in a significant reduction in preL-MMEJ. Altogether, our data indicate an association between POLQ independent MMEJ and clonal hematopoiesis and elucidate mutational mechanisms involved in the very first steps of leukemia evolution.


Diet Diurnally Regulates Small Intestinal Microbiome-Epithelial-Immune Homeostasis and Enteritis.

  • Timur Tuganbaev‎ et al.
  • Cell‎
  • 2020‎

Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: