Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 412 papers

Simultaneous inhibition of Vps34 kinase would enhance PI3Kδ inhibitor cytotoxicity in the B-cell malignancies.

  • Xiaochuan Liu‎ et al.
  • Oncotarget‎
  • 2016‎

PI3Kδ has been found to be over-expressed in B-Cell-related malignancies. Despite the clinical success of the first selective PI3Kδ inhibitor, CAL-101, inhibition of PI3Kδ itself did not show too much cytotoxic efficacy against cancer cells. One possible reason is that PI3Kδ inhibition induced autophagy that protects the cells from death. Since class III PI3K isoform PIK3C3/Vps34 participates in autophagy initiation and progression, we predicted that a PI3Kδ and Vps34 dual inhibitor might improve the anti-proliferative activity observed for PI3Kδ-targeted inhibitors. We discovered a highly potent ATP-competitive PI3Kδ/Vps34 dual inhibitor, PI3KD/V-IN-01, which displayed 10-1500 fold selectivity over other PI3K isoforms and did not inhibit any other kinases in the kinome. In cells, PI3KD/V-IN-01 showed 30-300 fold selectivity between PI3Kδ and other class I PI3K isoforms. PI3KD/V-IN-01 exhibited better anti-proliferative activity against AML, CLL and Burkitt lymphoma cell lines than known selective PI3Kδ and Vps34 inhibitors. Interestingly, we observed FLT3-ITD AML cells are more sensitive to PI3KD/V-IN-01 than the FLT3 wt expressing cells. In AML cell inoculated xenograft mouse model, PI3KD/V-IN-01 exhibited dose-dependent anti-tumor growth efficacies. These results suggest that dual inhibition of PI3Kδ and Vps34 might be a useful approach to improve the PI3Kδ inhibitor's anti-tumor efficacy.


Dual inhibition of AKT/FLT3-ITD by A674563 overcomes FLT3 ligand-induced drug resistance in FLT3-ITD positive AML.

  • Aoli Wang‎ et al.
  • Oncotarget‎
  • 2016‎

The FLT3-ITD mutation is one of the most prevalent oncogenic mutations in AML. Several FLT3 kinase inhibitors have shown impressive activity in clinical evaluation, however clinical responses are usually transient and clinical effects are rapidly lost due to drug resistance. One of the resistance mechanisms in the AML refractory patients involves FLT3-ligand induced reactivation of AKT and/or ERK signaling via FLT3 wt kinase. Via a screen of numerous AKT kinase inhibitors, we identified the well-established orally available AKT inhibitor, A674563, as a dual suppressor of AKT and FLT3-ITD. A674563 suppressed FLT3-ITD positive AML both in vitro and in vivo. More importantly, compared to other FLT3 inhibitors, A674563 is able to overcome FLT3 ligand-induced drug resistance through simultaneous inhibition of FLT3-ITD- and AKT-mediated signaling. Our findings suggest that A674563 might be a potential drug candidate for overcoming FLT3 ligand-mediated drug resistance in FLT3-ITD positive AML.


Determining PTEN functional status by network component deduced transcription factor activities.

  • Linh M Tran‎ et al.
  • PloS one‎
  • 2012‎

PTEN-controlled PI3K-AKT-mTOR pathway represents one of the most deregulated signaling pathways in human cancers. With many small molecule inhibitors that target PI3K-AKT-mTOR pathway being exploited clinically, sensitive and reliable ways of stratifying patients according to their PTEN functional status and determining treatment outcomes are urgently needed. Heterogeneous loss of PTEN is commonly associated with human cancers and yet PTEN can also be regulated on epigenetic, transcriptional or post-translational levels, which makes the use of simple protein or gene expression-based analyses in determining PTEN status less accurate. In this study, we used network component analysis to identify 20 transcription factors (TFs) whose activities deduced from their target gene expressions were immediately altered upon the re-expression of PTEN in a PTEN-inducible system. Interestingly, PTEN controls the activities (TFA) rather than the expression levels of majority of these TFs and these PTEN-controlled TFAs are substantially altered in prostate cancer mouse models. Importantly, the activities of these TFs can be used to predict PTEN status in human prostate, breast and brain tumor samples with enhanced reliability when compared to straightforward IHC-based or expression-based analysis. Furthermore, our analysis indicates that unique sets of PTEN-controlled TFAs significantly contribute to specific tumor types. Together, our findings reveal that TFAs may be used as "signatures" for predicting PTEN functional status and elucidate the transcriptional architectures underlying human cancers caused by PTEN loss.


Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells.

  • Jing Jiao‎ et al.
  • PloS one‎
  • 2012‎

New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin(-);Sca1(+);CD49f(hi) (LSC(hi)), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSC(hi) subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSC(hi) and Pten null LSC(hi). Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics.


UPLC-DAD/Q-TOF-MS Based Ingredients Identification and Vasorelaxant Effect of Ethanol Extract of Jasmine Flower.

  • Yongqiang Yin‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2014‎

Chinese people commonly make jasmine tea for recreation and health care. Actually, its medicinal value needs more exploration. In this study, vasorelaxant effect of ethanol extract of jasmine flower (EEJ) on isolated rat thoracic aorta rings was investigated and [Ca(2+)] was determined in vascular smooth muscle cells by laser scanning confocal microscope (LSCM). The result of aorta rings showed that EEJ could cause concentration-dependent relaxation of endothelium-intact rings precontracted with phenylephrine or KCl which was attenuated after preincubation of the rings with L-NAME and three different K(+) channel inhibitors; however, indomethacin and glibenclamide did not affect the vasodilatation of EEJ. In addition, EEJ could inhibit contraction induced by PE on endothelium-denuded rings in Ca(2+)-free medium as well as by accumulation of Ca(2+) in Ca(2+)-free medium with high K(+). LSCM also showed that EEJ could lower the elevated level of [Ca(2+)] induced by KCl. These indicate that the vasodilation of EEJ is in part related to causing the release of nitric oxide, activation of K(+) channels, inhibition of influx of excalcium, and release of calcium from sarcoplasmic reticulum. A total of 20 main ingredients, were identified in EEJ by UPLC-DAD/Q-TOF-MS. The vasodilation activity should be attributed to the high content of flavonoid glycosides and iridoid glycosides found in EEJ.


Structure of human dipeptidyl peptidase 10 (DPPY): a modulator of neuronal Kv4 channels.

  • Gustavo Arruda Bezerra‎ et al.
  • Scientific reports‎
  • 2015‎

The voltage-gated potassium channel family (Kv) constitutes the most diverse class of ion channels in the nervous system. Dipeptidyl peptidase 10 (DPP10) is an inactive peptidase that modulates the electrophysiological properties, cell-surface expression and subcellular localization of voltage-gated potassium channels. As a consequence, DPP10 malfunctioning is associated with neurodegenerative conditions like Alzheimer and fronto-temporal dementia, making this protein an attractive drug target. In this work, we report the crystal structure of DPP10 and compare it to that of DPP6 and DPP4. DPP10 belongs to the S9B serine protease subfamily and contains two domains with two distinct folds: a β-propeller and a classical α/β-hydrolase fold. The catalytic serine, however, is replaced by a glycine, rendering the protein enzymatically inactive. Difference in the entrance channels to the active sites between DPP10 and DPP4 provide an additional rationale for the lack of activity. We also characterize the DPP10 dimer interface focusing on the alternative approach for designing drugs able to target protein-protein interactions.


MYC Interacts with the G9a Histone Methyltransferase to Drive Transcriptional Repression and Tumorigenesis.

  • William B Tu‎ et al.
  • Cancer cell‎
  • 2018‎

MYC is an oncogenic driver that regulates transcriptional activation and repression. Surprisingly, mechanisms by which MYC promotes malignant transformation remain unclear. We demonstrate that MYC interacts with the G9a H3K9-methyltransferase complex to control transcriptional repression. Inhibiting G9a hinders MYC chromatin binding at MYC-repressed genes and de-represses gene expression. By identifying the MYC box II region as essential for MYC-G9a interaction, a long-standing missing link between MYC transformation and gene repression is unveiled. Across breast cancer cell lines, the anti-proliferative response to G9a pharmacological inhibition correlates with MYC sensitivity and gene signatures. Consistently, genetically depleting G9a in vivo suppresses MYC-dependent tumor growth. These findings unveil G9a as an epigenetic regulator of MYC transcriptional repression and a therapeutic vulnerability in MYC-driven cancers.


Repurposing cabozantinib to GISTs: Overcoming multiple imatinib-resistant cKIT mutations including gatekeeper and activation loop mutants in GISTs preclinical models.

  • Tingting Lu‎ et al.
  • Cancer letters‎
  • 2019‎

Despite of the great success of imatinib as the first-line treatment for GISTs, the majority of patients will develop drug-acquired resistance due to secondary mutations in the cKIT kinase. Sunitinib and regorafenib have been approved as the second and third line therapies to overcome some of these drug-resistance mutations; however, their limited clinical response, toxicity and resistance of the activation loop mutants still makes new therapies bearing different cKIT mutants activity spectrum profile highly demanded. Through a drug repositioning approach, we found that cabozantinib exhibited higher potency than imatinib against primary gain-of-function mutations of cKIT. Moreover, cabozantinib was able to overcome cKIT gatekeeper T670I mutation and the activation loop mutations that are resistant to imatinib or sunitinib. Cabozantinib demonstrated good efficacy in vitro and in vivo in the cKIT mutant-driven preclinical models of GISTs while displaying a long-lasting effect after treatment withdrawal. Furthermore, it also exhibited dose-dependent anti-proliferative efficacy in the GIST patient derived primary cells. Considering clinical safety and PK profile of cabozantinib, this report provides the basis for the future clinical applications of cabozantinib as an alternative anti-GISTs therapy in precision medicine.


Identification of serum proteins AHSG, FGA and APOA-I as diagnostic biomarkers for gastric cancer.

  • Feiyu Shi‎ et al.
  • Clinical proteomics‎
  • 2018‎

The development of clinically accessible biomarkers is critical for the early diagnosis of gastric cancer (GC) in patients. High-throughput proteomics techniques could not only effectively generate a serum peptide profile but also provide a new approach to identify potentially diagnostic and prognostic biomarkers for cancer patients.


TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma.

  • Kazuhide Nakayama‎ et al.
  • Oncotarget‎
  • 2018‎

Protein arginine methyltransferase (PRMT) 4 (also known as coactivator-associated arginine methyltransferase 1; CARM1) is involved in a variety of biological processes and is considered as a candidate oncogene owing to its overexpression in several types of cancer. Selective PRMT4 inhibitors are useful tools for clarifying the molecular events regulated by PRMT4 and for validating PRMT4 as a therapeutic target. Here, we report the discovery of TP-064, a potent, selective, and cell-active chemical probe of human PRMT4 and its co-crystal structure with PRMT4. TP-064 inhibited the methyltransferase activity of PRMT4 with high potency (half-maximal inhibitory concentration, IC50 < 10 nM) and selectivity over other PRMT family proteins, and reduced arginine dimethylation of the PRMT4 substrates BRG1-associated factor 155 (BAF155; IC50= 340 ± 30 nM) and Mediator complex subunit 12 (MED12; IC50 = 43 ± 10 nM). TP-064 treatment inhibited the proliferation of a subset of multiple myeloma cell lines, with affected cells arrested in G1 phase of the cell cycle. TP-064 and its negative control (TP-064N) will be valuable tools to further investigate the biology of PRMT4 and the therapeutic potential of PRMT4 inhibition.


The dual methyltransferase METTL13 targets N terminus and Lys55 of eEF1A and modulates codon-specific translation rates.

  • Magnus E Jakobsson‎ et al.
  • Nature communications‎
  • 2018‎

Eukaryotic elongation factor 1 alpha (eEF1A) delivers aminoacyl-tRNA to the ribosome and thereby plays a key role in protein synthesis. Human eEF1A is subject to extensive post-translational methylation, but several of the responsible enzymes remain unknown. Using a wide range of experimental approaches, we here show that human methyltransferase (MTase)-like protein 13 (METTL13) contains two distinct MTase domains targeting the N terminus and Lys55 of eEF1A, respectively. Our biochemical and structural analyses provide detailed mechanistic insights into recognition of the eEF1A N terminus by METTL13. Moreover, through ribosome profiling, we demonstrate that loss of METTL13 function alters translation dynamics and results in changed translation rates of specific codons. In summary, we here unravel the function of a human MTase, showing that it methylates eEF1A and modulates mRNA translation in a codon-specific manner.


Taurine-magnesium coordination compound, a potential anti-arrhythmic complex, improves aconitine-induced arrhythmias through regulation of multiple ion channels.

  • Jianshi Lou‎ et al.
  • Toxicology and applied pharmacology‎
  • 2018‎

Taurine-magnesium coordination compound (TMCC) exhibits antiarrhythmic effects in cesium-chloride-and ouabain-induced arrhythmias; however, the mechanism underlying these effects on arrhythmia remains poorly understood. Here, we investigated the effects of TMCC on aconitine-induced arrhythmia in vivo and the electrophysiological effects of this compound in rat ventricular myocytes in vitro. Aconitine was used to induce arrhythmias in rats, and the dosages required to produce ventricular premature contraction (VPC), ventricular tachycardia (VT), ventricular fibrillation (VF), and cardiac arrest (CA) were recorded. Additionally, the sodium current (INa) and L-type calcium current (ICa,L) were analyzed in normal and aconitine-treated ventricular myocytes using whole-cell patch-clamp recording. In vivo, intravenous administration of TMCC produced marked antiarrhythmic effects, as indicated by the increased dose of aconitine required to induce VPC, VT, VF, and CA. Moreover, this effect was abolished by administration of sodium channel opener veratridine and calcium channel agonist Bay K8644. In vitro, TMCC inhibited aconitine-induced increases in INa and ICa,L. These results revealed that TMCC inhibited aconitine-induced arrhythmias through effects on INa and ICa,L.


Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease.

  • Dolores Di Vizio‎ et al.
  • The American journal of pathology‎
  • 2012‎

Oncosomes are tumor-derived microvesicles that transmit signaling complexes between cell and tissue compartments. Herein, we show that amoeboid tumor cells export large (1- to 10-μm diameter) vesicles, derived from bulky cellular protrusions, that contain metalloproteinases, RNA, caveolin-1, and the GTPase ADP-ribosylation factor 6, and are biologically active toward tumor cells, endothelial cells, and fibroblasts. We describe methods by which large oncosomes can be selectively sorted by flow cytometry and analyzed independently of vesicles <1 μm. Structures resembling large oncosomes were identified in the circulation of different mouse models of prostate cancer, and their abundance correlated with tumor progression. Similar large vesicles were also identified in human tumor tissues, but they were not detected in the benign compartment. They were more abundant in metastases. Our results suggest that tumor microvesicles substantially larger than exosome-sized particles can be visualized and quantified in tissues and in the circulation, and isolated and characterized using clinically adaptable methods. These findings also suggest a mechanism by which migrating tumor cells condition the tumor microenvironment and distant sites, thereby potentiating advanced disease.


Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations.

  • Hong Wu‎ et al.
  • PloS one‎
  • 2013‎

Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 Å crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation.


Pten loss in the bone marrow leads to G-CSF-mediated HSC mobilization.

  • Melania Tesio‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

The phosphatase and tumor suppressor PTEN inhibits the phosphoinositol-3-kinase (PI3K) signaling pathway and plays a key role in cell growth, proliferation, survival, and migration. Pten conditional deletion using MxCre or Scl-CreER(T) leads to splenomegaly and leukemia formation, which occurs after the relocation of normal hematopoietic stem cells (HSCs) from the bone marrow to the spleen. Unexpectedly, dormant HSCs in the bone marrow do not enter the cell cycle upon Pten loss, they do not lose self-renewal activity, and they are not exhausted. Instead, Pten deficiency causes an up-regulation of the PI3K pathway in myeloid cells, but not in HSCs. Strikingly, myeloid cells secrete high levels of G-CSF upon Pten loss, leading to the mobilization of HSCs from the bone marrow and accumulation in the spleen. After deletion of Pten in mice lacking G-CSF, the splenomegaly, myeloproliferative disease, and splenic HSC accumulation are rescued. Our data show that although PTEN has little if any role in normal HSCs, it is essential to prevent overt G-CSF production by myeloid and stromal cells which otherwise causes HSCs to relocate to the spleen followed by lethal leukemia initiation.


Discovery of a potent, covalent BTK inhibitor for B-cell lymphoma.

  • Hong Wu‎ et al.
  • ACS chemical biology‎
  • 2014‎

BTK is a member of the TEC family of non-receptor tyrosine kinases whose deregulation has been implicated in a variety of B-cell-related diseases. We have used structure-based drug design in conjunction with kinome profiling and cellular assays to develop a potent, selective, and irreversible BTK kinase inhibitor, QL47, which covalently modifies Cys481. QL47 inhibits BTK kinase activity with an IC50 of 7 nM, inhibits autophosphorylation of BTK on Tyr223 in cells with an EC50 of 475 nM, and inhibits phosphorylation of a downstream effector PLCγ2 (Tyr759) with an EC50 of 318 nM. In Ramos cells QL47 induces a G1 cell cycle arrest that is associated with pronounced degradation of BTK protein. QL47 inhibits the proliferation of B-cell lymphoma cancer cell lines at submicromolar concentrations.


A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer.

  • Stephano S Mello‎ et al.
  • Cancer cell‎
  • 2017‎

The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression.


A nomogram prediction of postoperative surgical site infections in patients with perihilar cholangiocarcinoma.

  • Long Li‎ et al.
  • Medicine‎
  • 2017‎

Surgical site infection (SSI) is one of the major morbidities after radical resection for perihilar cholangiocarcinoma (PHCC). This study aimed to clarify the risk factors and construct a nomogram to predict SSIs in patients with PHCC.A total of 335 consecutive patients who underwent hepatectomy combined with hepaticojejunostomy between January 2013 and December 2015 were analyzed retrospectively. SSIs, including incisional (superficial and deep) and space/organ infection, were defined according to the Centers for Disease Control and Prevention (CDC)'s National Nosocomial Infection Surveillance (NNIS) system. Risk factors associated with postoperative SSIs were analyzed by univariate and multivariate analyses. A nomogram was developed on the basis of results from the multivariate logistic model and the discriminatory ability of the model was analyzed.PHCC patients had higher organ/space SSI rate than incisional SSI rate after radical resection. Multivariate analysis showed that risk factors indicating postoperative overall SSIs (incisional and organ/space) included coexisting cholangiolithiasis [odds ratio (OR): 6.77; 95% confidence interval (95% CI): 2.40-19.11; P < .001], blood loss >1500 mL (OR: 4.77; 95% CI: 1.45-15.65; P  =  .010), having abdominal surgical history (OR: 5.85; 95% CI: 1.91-17.97; P  =  .002), and bile leakage (OR: 15.28; 95% CI: 5.90-39.62; P < .001). The β coefficients from the multivariate logistic model were used to construct the model for estimation of SSI risk. The scoring model was as follows: -4.12 +1.91 × (coexisting cholangiolithiasis  =  1) + 1.77 × (having previous abdominal surgical history  =  1) +1.56 × (blood loss >1500 mL  =  1) + 2.73 × (bile leakage  =  1). The discriminatory ability of the model was good and the area under the receiver operating characteristic (ROC) curve (AUC) was 0.851.In PHCC patients, there may be a relationship between postoperative SSIs and abdominal surgical history, coexisting cholangiolithiasis, bile leakage, and blood loss. The nomogram can be used to estimate the risk of postoperative SSIs in patients with PHCC.


Discriminant analysis of functional connectivity patterns on Grassmann manifold.

  • Yong Fan‎ et al.
  • NeuroImage‎
  • 2011‎

The functional brain networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive function and brain disorders. Rather than analyzing each network encoded by a spatial independent component separately, we propose a novel algorithm for discriminant analysis of functional brain networks jointly at an individual level. The functional brain networks of each individual are used as bases for a linear subspace, referred to as a functional connectivity pattern, which facilitates a comprehensive characterization of fMRI data. The functional connectivity patterns of different individuals are analyzed on the Grassmann manifold by adopting a principal angle based Riemannian distance. In conjunction with a support vector machine classifier, a forward component selection technique is proposed to select independent components for constructing the most discriminative functional connectivity pattern. The discriminant analysis method has been applied to an fMRI based schizophrenia study with 31 schizophrenia patients and 31 healthy individuals. The experimental results demonstrate that the proposed method not only achieves a promising classification performance for distinguishing schizophrenia patients from healthy controls, but also identifies discriminative functional brain networks that are informative for schizophrenia diagnosis.


The ZIP5 ectodomain co-localizes with PrP and may acquire a PrP-like fold that assembles into a dimer.

  • Cosmin L Pocanschi‎ et al.
  • PloS one‎
  • 2013‎

The cellular prion protein (PrP(C)) was recently observed to co-purify with members of the LIV-1 subfamily of ZIP zinc transporters (LZTs), precipitating the surprising discovery that the prion gene family descended from an ancestral LZT gene. Here, we compared the subcellular distribution and biophysical characteristics of LZTs and their PrP-like ectodomains. When expressed in neuroblastoma cells, the ZIP5 member of the LZT subfamily was observed to be largely directed to the same subcellular locations as PrP(C) and both proteins were seen to be endocytosed through vesicles decorated with the Rab5 marker protein. When recombinantly expressed, the PrP-like domain of ZIP5 could be obtained with yields and levels of purity sufficient for structural analyses but it tended to aggregate, thereby precluding attempts to study its structure. These obstacles were overcome by moving to a mammalian cell expression system. The subsequent biophysical characterization of a homogeneous preparation of the ZIP5 PrP-like ectodomain shows that this protein acquires a dimeric, largely globular fold with an α-helical content similar to that of mammalian PrP(C). The use of a mammalian cell expression system also allowed for the expression and purification of stable preparations of Takifugu rubripes PrP-1, thereby overcoming a key hindrance to high-resolution work on a fish PrP(C).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: