Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites.

  • Ben C L van Schaijk‎ et al.
  • eLife‎
  • 2014‎

A highly efficacious pre-erythrocytic stage vaccine would be an important tool for the control and elimination of malaria but is currently unavailable. High-level protection in humans can be achieved by experimental immunization with Plasmodium falciparum sporozoites attenuated by radiation or under anti-malarial drug coverage. Immunization with genetically attenuated parasites (GAP) would be an attractive alternative approach. In this study, we present data on safety and protective efficacy using sporozoites with deletions of two genes, that is the newly identified b9 and slarp, which govern independent and critical processes for successful liver-stage development. In the rodent malaria model, PbΔb9ΔslarpGAP was completely attenuated showing no breakthrough infections while efficiently inducing high-level protection. The human PfΔb9ΔslarpGAP generated without drug resistance markers were infective to human hepatocytes in vitro and to humanized mice engrafted with human hepatocytes in vivo but completely aborted development after infection. These findings support the clinical development of a PfΔb9ΔslarpSPZ vaccine.


Sporozoite immunization of human volunteers under mefloquine prophylaxis is safe, immunogenic and protective: a double-blind randomized controlled clinical trial.

  • Else M Bijker‎ et al.
  • PloS one‎
  • 2014‎

Immunization of healthy volunteers with chloroquine ChemoProphylaxis and Sporozoites (CPS-CQ) efficiently and reproducibly induces dose-dependent and long-lasting protection against homologous Plasmodium falciparum challenge. Here, we studied whether chloroquine can be replaced by mefloquine, which is the only other licensed anti-malarial chemoprophylactic drug that does not affect pre-erythrocytic stages, exposure to which is considered essential for induction of protection by CPS immunization. In a double blind randomized controlled clinical trial, volunteers under either chloroquine prophylaxis (CPS-CQ, n = 5) or mefloquine prophylaxis (CPS-MQ, n = 10) received three sub-optimal CPS immunizations by bites from eight P. falciparum infected mosquitoes each, at monthly intervals. Four control volunteers received mefloquine prophylaxis and bites from uninfected mosquitoes. CPS-MQ immunization is safe and equally potent compared to CPS-CQ inducing protection in 7/10 (70%) versus 3/5 (60%) volunteers, respectively. Furthermore, specific antibody levels and cellular immune memory responses were comparable between both groups. We therefore conclude that mefloquine and chloroquine are equally effective in CPS-induced immune responses and protection. Trial registration: ClinicalTrials.gov NCT01422954.


Structure of human dipeptidyl peptidase 10 (DPPY): a modulator of neuronal Kv4 channels.

  • Gustavo Arruda Bezerra‎ et al.
  • Scientific reports‎
  • 2015‎

The voltage-gated potassium channel family (Kv) constitutes the most diverse class of ion channels in the nervous system. Dipeptidyl peptidase 10 (DPP10) is an inactive peptidase that modulates the electrophysiological properties, cell-surface expression and subcellular localization of voltage-gated potassium channels. As a consequence, DPP10 malfunctioning is associated with neurodegenerative conditions like Alzheimer and fronto-temporal dementia, making this protein an attractive drug target. In this work, we report the crystal structure of DPP10 and compare it to that of DPP6 and DPP4. DPP10 belongs to the S9B serine protease subfamily and contains two domains with two distinct folds: a β-propeller and a classical α/β-hydrolase fold. The catalytic serine, however, is replaced by a glycine, rendering the protein enzymatically inactive. Difference in the entrance channels to the active sites between DPP10 and DPP4 provide an additional rationale for the lack of activity. We also characterize the DPP10 dimer interface focusing on the alternative approach for designing drugs able to target protein-protein interactions.


Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations.

  • Hong Wu‎ et al.
  • PloS one‎
  • 2013‎

Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 Å crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation.


A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer.

  • Stephano S Mello‎ et al.
  • Cancer cell‎
  • 2017‎

The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression.


Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes.

  • Ben C L van Schaijk‎ et al.
  • PloS one‎
  • 2008‎

Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS) can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS) depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use.


Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity.

  • Will J R Stone‎ et al.
  • Nature communications‎
  • 2018‎

Infection with Plasmodium can elicit antibodies that inhibit parasite survival in the mosquito, when they are ingested in an infectious blood meal. Here, we determine the transmission-reducing activity (TRA) of naturally acquired antibodies from 648 malaria-exposed individuals using lab-based mosquito-feeding assays. Transmission inhibition is significantly associated with antibody responses to Pfs48/45, Pfs230, and to 43 novel gametocyte proteins assessed by protein microarray. In field-based mosquito-feeding assays the likelihood and rate of mosquito infection are significantly lower for individuals reactive to Pfs48/45, Pfs230 or to combinations of the novel TRA-associated proteins. We also show that naturally acquired purified antibodies against key transmission-blocking epitopes of Pfs48/45 and Pfs230 are mechanistically involved in TRA, whereas sera depleted of these antibodies retain high-level, complement-independent TRA. Our analysis demonstrates that host antibody responses to gametocyte proteins are associated with reduced malaria transmission efficiency from humans to mosquitoes.


Direct interaction between the PRDM3 and PRDM16 tumor suppressors and the NuRD chromatin remodeling complex.

  • Danton Ivanochko‎ et al.
  • Nucleic acids research‎
  • 2019‎

Aberrant isoform expression of chromatin-associated proteins can induce epigenetic programs related to disease. The MDS1 and EVI1 complex locus (MECOM) encodes PRDM3, a protein with an N-terminal PR-SET domain, as well as a shorter isoform, EVI1, lacking the N-terminus containing the PR-SET domain (ΔPR). Imbalanced expression of MECOM isoforms is observed in multiple malignancies, implicating EVI1 as an oncogene, while PRDM3 has been suggested to function as a tumor suppressor through an unknown mechanism. To elucidate functional characteristics of these N-terminal residues, we compared the protein interactomes of the full-length and ΔPR isoforms of PRDM3 and its closely related paralog, PRDM16. Unlike the ΔPR isoforms, both full-length isoforms exhibited a significantly enriched association with components of the NuRD chromatin remodeling complex, especially RBBP4. Typically, RBBP4 facilitates chromatin association of the NuRD complex by binding to histone H3 tails. We show that RBBP4 binds to the N-terminal amino acid residues of PRDM3 and PRDM16, with a dissociation constant of 3.0 μM, as measured by isothermal titration calorimetry. Furthermore, high-resolution X-ray crystal structures of PRDM3 and PRDM16 N-terminal peptides in complex with RBBP4 revealed binding to RBBP4 within the conserved histone H3-binding groove. These data support a mechanism of isoform-specific interaction of PRDM3 and PRDM16 with the NuRD chromatin remodeling complex.


Discovery of a chemical probe for PRDM9.

  • Abdellah Allali-Hassani‎ et al.
  • Nature communications‎
  • 2019‎

PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.


Highly potent, naturally acquired human monoclonal antibodies against Pfs48/45 block Plasmodium falciparum transmission to mosquitoes.

  • Amanda Fabra-García‎ et al.
  • Immunity‎
  • 2023‎

Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 μg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.


A portfolio of geographically distinct laboratory-adapted Plasmodium falciparum clones with consistent infection rates in Anopheles mosquitoes.

  • Marga van de Vegte-Bolmer‎ et al.
  • Malaria journal‎
  • 2021‎

The ability to culture Plasmodium falciparum continuously in vitro has enabled stable access to asexual and sexual parasites for malaria research. The portfolio of isolates has remained limited and research is still largely based on NF54 and its derived clone 3D7. Since 1978, isolates were collected and cryopreserved at Radboudumc from patients presenting at the hospital. Here, procedures are described for culture adaptation of asexual parasites, cloning and production of sexual stage parasites responsible for transmission (gametocytes) and production of oocysts in Anopheles mosquitoes. This study aimed to identify new culture-adapted transmissible P. falciparum isolates, originating from distinct geographical locations.


Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers.

  • Edurne Rujas‎ et al.
  • Nature communications‎
  • 2021‎

SARS-CoV-2, the virus responsible for COVID-19, has caused a global pandemic. Antibodies can be powerful biotherapeutics to fight viral infections. Here, we use the human apoferritin protomer as a modular subunit to drive oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into exceptionally potent neutralizers. Using this platform, half-maximal inhibitory concentration (IC50) values as low as 9 × 10-14 M are achieved as a result of up to 10,000-fold potency enhancements compared to corresponding IgGs. Combination of three different antibody specificities and the fragment crystallizable (Fc) domain on a single multivalent molecule conferred the ability to overcome viral sequence variability together with outstanding potency and IgG-like bioavailability. The MULTi-specific, multi-Affinity antiBODY (Multabody or MB) platform thus uniquely leverages binding avidity together with multi-specificity to deliver ultrapotent and broad neutralizers against SARS-CoV-2. The modularity of the platform also makes it relevant for rapid evaluation against other infectious diseases of global health importance. Neutralizing antibodies are a promising therapeutic for SARS-CoV-2.


CRISPR/Cas9-engineered inducible gametocyte producer lines as a valuable tool for Plasmodium falciparum malaria transmission research.

  • Sylwia D Boltryk‎ et al.
  • Nature communications‎
  • 2021‎

The malaria parasite Plasmodium falciparum replicates inside erythrocytes in the blood of infected humans. During each replication cycle, a small proportion of parasites commits to sexual development and differentiates into gametocytes, which are essential for parasite transmission via the mosquito vector. Detailed molecular investigation of gametocyte biology and transmission has been hampered by difficulties in generating large numbers of these highly specialised cells. Here, we engineer P. falciparum NF54 inducible gametocyte producer (iGP) lines for the routine mass production of synchronous gametocytes via conditional overexpression of the sexual commitment factor GDV1. NF54/iGP lines consistently achieve sexual commitment rates of 75% and produce viable gametocytes that are transmissible by mosquitoes. We also demonstrate that further genetic engineering of NF54/iGP parasites is a valuable tool for the targeted exploration of gametocyte biology. In summary, we believe the iGP approach developed here will greatly expedite basic and applied malaria transmission stage research.


Whole sporozoite immunization with Plasmodium falciparum strain NF135 in a randomized trial.

  • Saskia C van der Boor‎ et al.
  • BMC medicine‎
  • 2023‎

Whole sporozoite immunization under chemoprophylaxis (CPS regime) induces long-lasting sterile homologous protection in the controlled human malaria infection model using Plasmodium falciparum strain NF54. The relative proficiency of liver-stage parasite development may be an important factor determining immunization efficacy. Previous studies show that Plasmodium falciparum strain NF135 produces relatively high numbers of large liver-stage schizonts in vitro. Here, we evaluate this strain for use in CPS immunization regimes.


A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice.

  • R Mark Jones‎ et al.
  • PloS one‎
  • 2013‎

Malaria transmission blocking vaccines (TBVs) are considered an effective means to control and eventually eliminate malaria. The Pfs25 protein, expressed predominantly on the surface of the sexual and sporogonic stages of Plasmodium falciparum including gametes, zygotes and ookinetes, is one of the primary targets for TBV. It has been demonstrated that plants are an effective, highly scalable system for the production of recombinant proteins, including virus-like particles (VLPs). We engineered VLPs (Pfs25-CP VLP) comprising Pfs25 fused to the Alfalfa mosaic virus coat protein (CP) and produced these non-enveloped hybrid VLPs in Nicotiana benthamiana plants using a Tobacco mosaic virus-based 'launch' vector. Purified Pfs25-CP VLPs were highly consistent in size (19.3±2.4 nm in diameter) with an estimated 20-30% incorporation of Pfs25 onto the VLP surface. Immunization of mice with one or two doses of Pfs25-CP VLPs plus Alhydrogel® induced serum antibodies with complete transmission blocking activity through the 6 month study period. These results support the evaluation of Pfs25-CP VLP as a potential TBV candidate and the feasibility of the 'launch' vector technology for the production of VLP-based recombinant vaccines against infectious diseases.


Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation.

  • Matías Alvarez-Saavedra‎ et al.
  • Nature communications‎
  • 2014‎

Chromatin compaction mediates progenitor to post-mitotic cell transitions and modulates gene expression programs, yet the mechanisms are poorly defined. Snf2h and Snf2l are ATP-dependent chromatin remodelling proteins that assemble, reposition and space nucleosomes, and are robustly expressed in the brain. Here we show that mice conditionally inactivated for Snf2h in neural progenitors have reduced levels of histone H1 and H2A variants that compromise chromatin fluidity and transcriptional programs within the developing cerebellum. Disorganized chromatin limits Purkinje and granule neuron progenitor expansion, resulting in abnormal post-natal foliation, while deregulated transcriptional programs contribute to altered neural maturation, motor dysfunction and death. However, mice survive to young adulthood, in part from Snf2l compensation that restores Engrailed-1 expression. Similarly, Purkinje-specific Snf2h ablation affects chromatin ultrastructure and dendritic arborization, but alters cognitive skills rather than motor control. Our studies reveal that Snf2h controls chromatin organization and histone H1 dynamics for the establishment of gene expression programs underlying cerebellar morphogenesis and neural maturation.


A multiplex assay for the sensitive detection and quantification of male and female Plasmodium falciparum gametocytes.

  • Lisette Meerstein-Kessel‎ et al.
  • Malaria journal‎
  • 2018‎

The transmission of malaria to mosquitoes depends on the presence of gametocytes that circulate in the peripheral blood of infected human hosts. Sensitive estimates of the densities of female gametocytes (FG) and male gametocytes (MG) may allow the prediction of infectivity to mosquitoes and thus a molecular estimate of the human infectious reservoir for transmission.


NleG Type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases.

  • Bin Wu‎ et al.
  • PLoS pathogens‎
  • 2010‎

NleG homologues constitute the largest family of Type 3 effectors delivered by pathogenic E. coli, with fourteen members in the enterohaemorrhagic (EHEC) O157:H7 strain alone. Identified recently as part of the non-LEE-encoded (Nle) effector set, this family remained uncharacterised and shared no sequence homology to other proteins including those of known function. The C-terminal domain of NleG2-3 (residues 90 to 191) is the most conserved region in NleG proteins and was solved by NMR. Structural analysis of this structure revealed the presence of a RING finger/U-box motif. Functional assays demonstrated that NleG2-3 as well as NleG5-1, NleG6-2 and NleG9' family members exhibited a strong autoubiquitination activity in vitro; a characteristic usually expressed by eukaryotic ubiquitin E3 ligases. When screened for activity against a panel of 30 human E2 enzymes, the NleG2-3 and NleG5-1 homologues showed an identical profile with only UBE2E2, UBE2E3 and UBE2D2 enzymes supporting NleG activity. Fluorescence polarization analysis yielded a binding affinity constant of 56+/-2 microM for the UBE2D2/NleG5-1 interaction, a value comparable with previous studies on E2/E3 affinities. The UBE2D2 interaction interface on NleG2-3 defined by NMR chemical shift perturbation and mutagenesis was shown to be generally similar to that characterised for human RING finger ubiquitin ligases. The alanine substitutions of UBE2D2 residues Arg5 and Lys63, critical for activation of eukaryotic E3 ligases, also significantly decreased both NleG binding and autoubiquitination activity. These results demonstrate that bacteria-encoded NleG effectors are E3 ubiquitin ligases analogous to RING finger and U-box enzymes in eukaryotes.


Safety, tolerability, and Plasmodium falciparum transmission-reducing activity of monoclonal antibody TB31F: a single-centre, open-label, first-in-human, dose-escalation, phase 1 trial in healthy malaria-naive adults.

  • Saskia C van der Boor‎ et al.
  • The Lancet. Infectious diseases‎
  • 2022‎

Malaria elimination requires interruption of the highly efficient transmission of Plasmodium parasites by mosquitoes. TB31F is a humanised monoclonal antibody that binds the gamete surface protein Pfs48/45 and inhibits fertilisation, thereby preventing further parasite development in the mosquito midgut and onward transmission. We aimed to evaluate the safety and efficacy of TB31F in malaria-naive participants.


Preclinical development of a Pfs230-Pfs48/45 chimeric malaria transmission-blocking vaccine.

  • Susheel K Singh‎ et al.
  • NPJ vaccines‎
  • 2021‎

The Plasmodium falciparum Pfs230 and Pfs48/45 proteins are leading candidates for a malaria transmission-blocking vaccine (TBV). Previously, we showed that a Pfs230-Pfs48/45 fusion protein elicits higher levels of functional antibodies than the individual antigens, but low yields hampered progression to clinical evaluation. Here we identified a modified construct (ProC6C) with a circumsporozoite protein (CSP) repeat-linker sequence that enhances expression. A scalable and reproducible process in the Lactococcus lactis expression system was developed and ProC6C was successfully transferred for manufacturing under current Good Manufacturing Practices (cGMP). In addition, a panel of analytical assays for release and stability were developed. Intact mass spectrometry analysis and multiangle light scattering showed that the protein contained correct disulfide bonds and was monomeric. Immunogenicity studies in mice showed that the ProC6C adsorbed to Alhydrogel®, with or without Matrix-MTM, elicited functional antibodies that reduced transmission to mosquitoes and sporozoite invasion of human hepatocytes. Altogether, our data support manufacture and clinical evaluation of ProC6C as a multistage malaria-vaccine candidate.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: