Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Bacillus anthracis interacts with plasmin(ogen) to evade C3b-dependent innate immunity.

  • Myung-Chul Chung‎ et al.
  • PloS one‎
  • 2011‎

The causative agent of anthrax, Bacillus anthracis, is capable of circumventing the humoral and innate immune defense of the host and modulating the blood chemistry in circulation to initiate a productive infection. It has been shown that the pathogen employs a number of strategies against immune cells using secreted pathogenic factors such as toxins. However, interference of B. anthracis with the innate immune system through specific interaction of the spore surface with host proteins such as the complement system has heretofore attracted little attention. In order to assess the mechanisms by which B. anthracis evades the defense system, we employed a proteomic analysis to identify human serum proteins interacting with B. anthracis spores, and found that plasminogen (PLG) is a major surface-bound protein. PLG efficiently bound to spores in a lysine- and exosporium-dependent manner. We identified α-enolase and elongation factor tu as PLG receptors. PLG-bound spores were capable of exhibiting anti-opsonic properties by cleaving C3b molecules in vitro and in rabbit bronchoalveolar lavage fluid, resulting in a decrease in macrophage phagocytosis. Our findings represent a step forward in understanding the mechanisms involved in the evasion of innate immunity by B. anthracis through recruitment of PLG resulting in the enhancement of anti-complement and anti-opsonization properties of the pathogen.


Reverse-Phase Microarray Analysis Reveals Novel Targets in Lymph Nodes of Bacillus anthracis Spore-Challenged Mice.

  • Taissia G Popova‎ et al.
  • PloS one‎
  • 2015‎

Anthrax is a frequently fatal infection of many animal species and men. The causative agent Bacillus anthracis propagates through the lymphatic system of the infected host; however, the specific interactions of the host and microbe within the lymphatics are incompletely understood. We report the first description of the phosphoprotein signaling in the lymph nodes of DBA/2 mice using a novel technique combining the reverse-phase microarray with the laser capture microdissection. Mice were challenged into foot pads with spores of toxinogenic, unencapsulated Sterne strain. The spores quickly migrated to the regional popliteal lymph nodes and spread to the bloodstream as early as 3 h post challenge. All mice died before 72 h post challenge from the systemic disease accompanied by a widespread LN tissue damage by bacteria, including the hemorrhagic necrotizing lymphadenitis, infiltration of CD11b+ and CD3+ cells, and massive proliferation of bacteria in lymph nodes. A macrophage scavenger receptor CD68/macrosialin was upregulated and found in association with vegetative bacteria likely as a marker of their prior interaction with macrophages. The major signaling findings among the 65 tested proteins included the reduced MAPK signaling, upregulation of STAT transcriptional factors, and altered abundance of a number of pro- and anti-apoptotic proteins with signaling properties opposing each other. Downregulation of ERK1/2 was associated with the response of CD11b+ macrophages/dendritic cells, while upregulation of the pro-apoptotic Puma indicated a targeting of CD3+ T-cells. A robust upregulation of the anti-apoptotic survivin was unexpected because generally it is not observed in adult tissues. Taken together with the activation of STATs it may reflect a new pathogenic mechanism aimed to delay the onset of apoptosis. Our data emphasize a notion that the net biological outcome of disease is determined by a cumulative impact of factors representing the microbial insult and the protective capacity of the host.


Whole proteome analysis of mouse lymph nodes in cutaneous anthrax.

  • Taissia G Popova‎ et al.
  • PloS one‎
  • 2014‎

This study aimed to characterize a soluble proteome of popliteal lymph nodes during lymphadenitis induced by intradermal injection of Bacillus anthracis Sterne spores in mice using tandem LC-MS/MS and reverse-phase protein microarray with antibodies specific to epitopes of phosphorylated proteins. More than 380 proteins were detected in the normal intra-nodal lymph, while the infectious process resulted in the profound changes in the protein abundances and appearance of 297 unique proteins. These proteins belong to an array of processes reflecting response to wounding, inflammation and perturbations of hemostasis, innate immune response, coagulation and fibrinolysis, regulation of body fluid levels and vascular disturbance among others. Comparison of lymph and serum revealed 83 common proteins. Also, using 71 antibodies specific to total and phosphorylated forms of proteins we carried initial characterization of circulating lymph phosphoproteome which brought additional information regarding signaling pathways operating in the lymphatics. The results demonstrate that the proteome of intra-nodal lymph serves as a sensitive sentinel of the processes occurring within the lymph nodes during infection. The acute innate response of the lymph nodes to anthrax is accompanied by cellular damage and inflammation with a large number of up- and down-regulated proteins many of which are distinct from those detected in serum. MS data are available via ProteomeXchange with identifier PXD001342.


Chemokine-Releasing Microparticles Improve Bacterial Clearance and Survival of Anthrax Spore-Challenged Mice.

  • Taissia G Popova‎ et al.
  • PloS one‎
  • 2016‎

In this study the hydrogel microparticles (MPs) were used to enhance migration of neutrophils in order to improve outcome of anthrax infection in a mouse model. Two MP formulations were tested. In the first one the polyacrylamide gel MPs were chemically coupled with Cibacron Blue (CB) affinity bait. In the second one the bait molecules within the MPs were additionally loaded with neutrophil-attracting chemokines (CKs), human CXCL8 and mouse CCL3. A non-covalent interaction of the bait with the CKs provided their gradual release after administration of the MPs to the host. Mice were challenged into footpads with Bacillus anthracis Sterne spores and given a dose of MPs a few hours before and/or after the spores. Pre-treatment with a single dose of CK-releasing MPs without any additional intervention was able to induce influx of neutrophils to the site of spore inoculation and regional lymph nodes correlating with reduced bacterial burden and decreased inflammatory response in footpads. On average, in two independent experiments, up to 53% of mice survived over 13 days. All control spore-challenged but MP-untreated mice died. The CB-coupled particles were also found to improve survival likely due to the capacity to stimulate release of endogenous CKs, but were less potent at decreasing the inflammatory host response than the CK-releasing MPs. The CK post-treatment did not improve survival compared to the untreated mice which died within 4 to 6 days with a strong inflammation of footpads, indicating quick dissemination of spores though the lymphatics after challenge. This is the first report on the enhanced innate host resistance to anthrax in response to CKs delivered and/or endogenously induced by the MPs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: