Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Inputs to serotonergic neurons revealed by conditional viral transneuronal tracing.

  • João M Braz‎ et al.
  • The Journal of comparative neurology‎
  • 2009‎

Descending projections arising from brainstem serotonergic (5HT) neurons contribute to both facilitatory and inhibitory controls of spinal cord "pain" transmission neurons. Unclear, however, are the brainstem networks that influence the output of these 5HT neurons. To address this question, here we used a novel neuroanatomical tracing method in a transgenic line of mice in which Cre recombinase is selectively expressed in 5HT neurons (ePet-Cre mice). Specifically, we injected the conditional pseudorabies virus recombinant (BA2001) that can replicate only in Cre-expressing neurons. Because BA2001 transports exclusively in a retrograde manner, we were able to reveal a subset of the neurons and circuits that are located upstream of the Cre-expressing 5HT neurons. We show that diverse brainstem regions differentially target the 5HT neurons of the dorsal raphe (DR) and the nucleus raphe magnus of the rostroventral medulla (RVM). Among these are several catecholaminergic and cholinergic cell groups, the periaqueductal gray, several brainstem reticular nuclei, and the nucleus of the solitary tract. We conclude that a brainstem 5HT network integrates somatic and visceral inputs arising from various areas of the body. We also identified a circuit that arises from projection neurons of deep spinal cord laminae V-VIII and targets the 5HT neurons of the NRM, but not of the DR. This spinoreticular pathway constitutes an anatomical substrate through which a noxious stimulus can activate 5HT neurons of the NRM and in turn could trigger descending serotonergic antinociceptive controls.


Olfactory ensheathing glia express aquaporin 1.

  • Shannon D Shields‎ et al.
  • The Journal of comparative neurology‎
  • 2010‎

Olfactory ensheathing glia (OEG) are distinct from other glia in their developmental origin, presence in both the peripheral and central nervous systems, and highly restricted location. OEG are present only in the olfactory lamina propria, olfactory nerve, and the outer two layers of the olfactory bulb, where they envelop bundles of olfactory sensory neuron axons in a manner distinct from myelination. Because of their unique properties and their association with the continually generated olfactory sensory neurons, OEG have attracted interest for their potential capacity to support axonal regeneration, for example, after spinal cord injury. However, study of the properties and function of OEG has been hampered by a paucity of neurochemical markers with which to identify and distinguish them definitively from other types of glia. Here we provide evidence through anatomical colocalization studies that OEG express the water channel aquaporin 1 (AQP1), both in vivo and in vitro. We propose that AQP1 expression represents an important distinguishing characteristic of OEG, which may impart unique function to these glia.


Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury.

  • Hugues Petitjean‎ et al.
  • Cell reports‎
  • 2015‎

Neuropathic pain is a chronic debilitating disease that results from nerve damage, persists long after the injury has subsided, and is characterized by spontaneous pain and mechanical hypersensitivity. Although loss of inhibitory tone in the dorsal horn of the spinal cord is a major contributor to neuropathic pain, the molecular and cellular mechanisms underlying this disinhibition are unclear. Here, we combined pharmacogenetic activation and selective ablation approaches in mice to define the contribution of spinal cord parvalbumin (PV)-expressing inhibitory interneurons in naive and neuropathic pain conditions. Ablating PV neurons in naive mice produce neuropathic pain-like mechanical allodynia via disinhibition of PKCγ excitatory interneurons. Conversely, activating PV neurons in nerve-injured mice alleviates mechanical hypersensitivity. These findings indicate that PV interneurons are modality-specific filters that gate mechanical but not thermal inputs to the dorsal horn and that increasing PV interneuron activity can ameliorate the mechanical hypersensitivity that develops following nerve injury.


Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors.

  • Rebecca P Seal‎ et al.
  • Nature‎
  • 2009‎

Mechanical pain contributes to the morbidity associated with inflammation and trauma, but primary sensory neurons that convey the sensation of acute and persistent mechanical pain have not been identified. Dorsal root ganglion (DRG) neurons transmit sensory information to the spinal cord using the excitatory transmitter glutamate, a process that depends on glutamate transport into synaptic vesicles for regulated exocytotic release. Here we report that a small subset of cells in the DRG expresses the low abundance vesicular glutamate transporter VGLUT3 (also known as SLC17A8). In the dorsal horn of the spinal cord, these afferents project to lamina I and the innermost layer of lamina II, which has previously been implicated in persistent pain caused by injury. Because the different VGLUT isoforms generally have a non-redundant pattern of expression, we used Vglut3 knockout mice to assess the role of VGLUT3(+) primary afferents in the behavioural response to somatosensory input. The loss of VGLUT3 specifically impairs mechanical pain sensation, and in particular the mechanical hypersensitivity to normally innocuous stimuli that accompanies inflammation, nerve injury and trauma. Direct recording from VGLUT3(+) neurons in the DRG further identifies them as a poorly understood population of unmyelinated, low threshold mechanoreceptors (C-LTMRs). The analysis of Vglut3(-/-) mice now indicates a critical role for C-LTMRs in the mechanical hypersensitivity caused by injury.


Neuronal aromatase expression in pain processing regions of the medullary and spinal cord dorsal horn.

  • May Tran‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

In both acute and chronic pain conditions, women tend to be more sensitive than men. This sex difference may be regulated by estrogens, such as estradiol, that are synthesized in the spinal cord and brainstem and act locally to influence pain processing. To identify a potential cellular source of local estrogen, here we examined the expression of aromatase, the enzyme that catalyzes the conversion of testosterone to estradiol. Our studies focused on primary afferent neurons and on their central targets in the spinal cord and medulla as well as in the nucleus of the solitary tract, the target of nodose ganglion-derived visceral afferents. Immunohistochemical staining in an aromatase reporter mouse revealed that many neurons in laminae I and V of the spinal cord dorsal horn and caudal spinal trigeminal nucleus and in the nucleus of the solitary tract express aromatase. The great majority of these cells also express inhibitory interneuron markers. We did not find sex differences in aromatase expression and neither the pattern nor the number of neurons changed in a sciatic nerve transection model of neuropathic pain or in the Complete Freund's adjuvant model of inflammatory pain. A few aromatase neurons express Fos after cheek injection of capsaicin, formalin, or chloroquine. In total, given their location, these aromatase neurons are poised to engage nociceptive circuits, whether it is through local estrogen synthesis or inhibitory neurotransmitter release.


Hippocalcin-like 4, a neural calcium sensor, has a limited contribution to pain and itch processing.

  • Christopher G Alvaro‎ et al.
  • PloS one‎
  • 2020‎

Calcium binding proteins are expressed throughout the central and peripheral nervous system and disruption of their activity has major consequences in a wide array of cellular processes, including transmission of nociceptive signals that are processed at the level of the spinal cord. We previously reported that the calcium binding protein, hippocalcin-like 4 (Hpcal4), is heavily expressed in interneurons of the superficial dorsal horn, and that its expression is significantly downregulated in a TR4 mutant mouse model that exhibits major pain and itch deficits due to loss of a subpopulation of excitatory interneurons. That finding suggested that Hpcal4 may be a contributor to the behavioral phenotype of the TR4 mutant mouse. To address this question, here we investigated the behavioral consequences of global deletion of Hpcal4 in a battery of acute and persistent pain and itch tests. Unexpectedly, with the exception of a mild reduction in acute baseline thermal responses, Hpcal4-deficient mice exhibit no major deficits in pain or itch responses, under normal conditions or in the setting of tissue or nerve injury. Taken together, our results indicate that the neural calcium sensor Hpcal4 likely makes a limited contribution to pain and itch processing.


Docking for EP4R antagonists active against inflammatory pain.

  • Stefan Gahbauer‎ et al.
  • Nature communications‎
  • 2023‎

The lipid prostaglandin E2 (PGE2) mediates inflammatory pain by activating G protein-coupled receptors, including the prostaglandin E2 receptor 4 (EP4R). Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce nociception by inhibiting prostaglandin synthesis, however, the disruption of upstream prostanoid biosynthesis can lead to pleiotropic effects including gastrointestinal bleeding and cardiac complications. In contrast, by acting downstream, EP4R antagonists may act specifically as anti-inflammatory agents and, to date, no selective EP4R antagonists have been approved for human use. In this work, seeking to diversify EP4R antagonist scaffolds, we computationally dock over 400 million compounds against an EP4R crystal structure and experimentally validate 71 highly ranked, de novo synthesized molecules. Further, we show how structure-based optimization of initial docking hits identifies a potent and selective antagonist with 16 nanomolar potency. Finally, we demonstrate favorable pharmacokinetics for the discovered compound as well as anti-allodynic and anti-inflammatory activity in several preclinical pain models in mice.


Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain.

  • Jeremiah D Osteen‎ et al.
  • Nature‎
  • 2016‎

Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.


Ensuring transparency and minimization of methodologic bias in preclinical pain research: PPRECISE considerations.

  • Nick A Andrews‎ et al.
  • Pain‎
  • 2016‎

There is growing concern about lack of scientific rigor and transparent reporting across many preclinical fields of biological research. Poor experimental design and lack of transparent reporting can result in conscious or unconscious experimental bias, producing results that are not replicable. The Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) public-private partnership with the U.S. Food and Drug Administration sponsored a consensus meeting of the Preclinical Pain Research Consortium for Investigating Safety and Efficacy (PPRECISE) Working Group. International participants from universities, funding agencies, government agencies, industry, and a patient advocacy organization attended. Reduction of publication bias, increasing the ability of others to faithfully repeat experimental methods, and increased transparency of data reporting were specifically discussed. Parameters deemed essential to increase confidence in the published literature were clear, specific reporting of an a priori hypothesis and definition of primary outcome measure. Power calculations and whether measurement of minimal meaningful effect size to determine these should be a core component of the preclinical research effort provoked considerable discussion, with many but not all agreeing. Greater transparency of reporting should be driven by scientists, journal editors, reviewers, and grant funders. The conduct of high-quality science that is fully reported should not preclude novelty and innovation in preclinical pain research, and indeed, any efforts that curtail such innovation would be misguided. We believe that to achieve the goal of finding effective new treatments for patients with pain, the pain field needs to deal with these challenging issues.


Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain.

  • Zhonghui Guan‎ et al.
  • Nature neuroscience‎
  • 2016‎

Although microglia have been implicated in nerve injury-induced neuropathic pain, the manner by which injured sensory neurons engage microglia remains unclear. We found that peripheral nerve injury induced de novo expression of colony-stimulating factor 1 (CSF1) in injured sensory neurons. CSF1 was transported to the spinal cord, where it targeted the microglial CSF1 receptor (CSF1R). Cre-mediated sensory neuron deletion of Csf1 completely prevented nerve injury-induced mechanical hypersensitivity and reduced microglial activation and proliferation. In contrast, intrathecal injection of CSF1 induced mechanical hypersensitivity and microglial proliferation. Nerve injury also upregulated CSF1 in motoneurons, where it was required for ventral horn microglial activation and proliferation. Downstream of CSF1R, we found that the microglial membrane adaptor protein DAP12 was required for both nerve injury- and intrathecal CSF1-induced upregulation of pain-related microglial genes and the ensuing pain, but not for microglial proliferation. Thus, both CSF1 and DAP12 are potential targets for the pharmacotherapy of neuropathic pain.


Lis1 reduction causes tangential migratory errors in mouse spinal cord.

  • Katherine D Moore‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

Mutations in human LIS1 cause abnormal neuronal migration and a smooth brain phenotype known as lissencephaly. Lis1+/− (Pafah1b1) mice show defective lamination in the cerebral cortex and hippocampal formation, whereas homozygous mutations result in embryonic lethality. Given that Lis1 is highly expressed in embryonic neurons, we hypothesized that sympathetic and parasympathetic preganglionic neurons (SPNs and PPNs) would exhibit migratory defects in Lis1+/− mice. The initial radial migration of SPNs and PPNs that occurs together with somatic motor neurons appeared unaffected in Lis1+/− mice. The subsequent dorsally directed tangential migration, however, was aberrant in a subset of these neurons. At all embryonic ages analyzed, the distribution of SPNs and PPNs in Lis1+/− mice was elongated dorsoventrally compared with Lis1+/+ mice. Individual cell bodies of ectopic preganglionic neurons were found in the ventral spinal cord with their leading processes oriented along their dorsal migratory trajectory. By birth, Lis1+/− SPNs and PPNs were separated into distinct groups, those that were correctly, and those incorrectly positioned in the intermediate horn. As mispositioned SPNs and PPNs still were detected in P30 Lis1+/− mice, we conclude that these neurons ceased migration prematurely. Additionally, we found that a dorsally located group of somatic motor neurons in the lumbar spinal cord, the retrodorsolateral nucleus, showed delayed migration in Lis1+/− mice. These results suggest that Lis1 is required for the dorsally directed tangential migration of many sympathetic and parasympathetic preganglionic neurons and a subset of somatic motor neurons.


Presynaptic Inputs to Any CNS Projection Neuron Identified by Dual Recombinant Virus Infection.

  • João M Bráz‎ et al.
  • PloS one‎
  • 2015‎

Although neuroanatomical tracing studies have defined the origin and targets of major projection neurons (PN) of the central nervous system (CNS), there is much less information about the circuits that influence these neurons. Recently, genetic approaches that use Cre recombinase-dependent viral vectors have greatly facilitated such circuit analysis, but these tracing approaches are limited by the availability of Cre-expressing mouse lines and the difficulty in restricting Cre expression to discrete regions of the CNS. Here, we illustrate an alternative approach to drive Cre expression specifically in defined subsets of CNS projection neurons, so as to map both direct and indirect presynaptic inputs to these cells. The method involves a combination of Cre-dependent transneuronal viral tracers that can be used in the adult and that does not require genetically modified mice. To trigger Cre-expression we inject a Cre-expressing adenovirus that is retrogradely transported to the projection neurons of interest. The region containing the retrogradely labeled projection neurons is next injected with Cre-dependent pseudorabies or rabies vectors, which results in labeling of poly- and monosynaptic neuronal inputs, respectively. In proof-of-concept experiments, we used this novel tracing system to study the circuits that engage projection neurons of the superficial dorsal horn of the spinal cord and trigeminal nucleus caudalis, neurons of the parabrachial nucleus of the dorsolateral pons that project to the amygdala and cortically-projecting neurons of the lateral geniculate nucleus. Importantly, because this dual viral tracing method does not require genetically derived Cre-expressing mouse lines, inputs to almost any projection system can be studied and the analysis can be performed in larger animals, such as the rat.


Genetically expressed transneuronal tracer reveals direct and indirect serotonergic descending control circuits.

  • João Manuel Braz‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

Despite the evidence for a significant contribution of brainstem serotonergic (5HT) systems to the control of spinal cord "pain" transmission neurons, attention has turned recently to the influence of nonserotonergic neurons, including the facilitatory and inhibitory controls that originate from so-called "on" and "off" cells of the rostroventral medulla (RVM). Unclear, however, is the extent to which these latter circuits interact with or are influenced by the serotonergic cell groups. To address this question we selectively targeted expression of a transneuronal tracer, wheat germ agglutinin (WGA), in the 5HT neurons so as to study the interplay between the 5HT and non-5HT systems. In addition to confirming the direct medullary 5HT projection to the spinal cord we also observed large numbers of non-5HT neurons, in the medullary nucleus reticularis gigantocellularis and magnocellularis, that were WGA-immunoreactive, i.e., were transneuronally labeled from 5HT neurons. FluoroGold injections into the spinal cord established that these reticular neurons are not only postsynaptic to the 5HT neurons of the medulla, but that most are also at the origin of descending, bulbospinal pathways. By contrast, we found no evidence that neurons of the midbrain periaqueductal gray that project to the RVM are postsynaptic to midbrain or medullary 5HT neurons. Finally, we found very few examples of WGA-immunoreactive noradrenergic neurons, which suggests that there is considerable independence of the monoaminergic bulbospinal pathways. Our results indicate that 5HT neurons influence "pain" processing at the spinal cord level both directly and indirectly via feedforward connections with multiple non-5HT descending control pathways.


Microcircuit Mechanisms through which Mediodorsal Thalamic Input to Anterior Cingulate Cortex Exacerbates Pain-Related Aversion.

  • Karuna S Meda‎ et al.
  • Neuron‎
  • 2019‎

Hyperexcitability of the anterior cingulate cortex (ACC) is thought to drive aversion associated with chronic neuropathic pain. Here, we studied the contribution of input from the mediodorsal thalamus (MD) to ACC, using sciatic nerve injury and chemotherapy-induced mouse models of neuropathic pain. Activating MD inputs elicited pain-related aversion in both models. Unexpectedly, excitatory responses of layer V ACC neurons to MD inputs were significantly weaker in pain models compared to controls. This caused the ratio between excitation and feedforward inhibition elicited by MD input to shift toward inhibition, specifically for subcortically projecting (SC) layer V neurons. Furthermore, direct inhibition of SC neurons reproduced the pain-related aversion elicited by activating MD inputs. Finally, both the ability to elicit pain-related aversion and the decrease in excitation were specific to MD inputs; activating basolateral amygdala inputs produced opposite effects. Thus, chronic pain-related aversion may reflect activity changes in specific pathways, rather than generalized ACC hyperactivity.


Mispositioned Neurokinin-1 Receptor-Expressing Neurons Underlie Heat Hyperalgesia in Disabled-1 Mutant Mice.

  • Xidao Wang‎ et al.
  • eNeuro‎
  • 2019‎

Reelin (Reln) and Disabled-1 (Dab1) participate in the Reln-signaling pathway and when either is deleted, mutant mice have the same spinally mediated behavioral abnormalities, increased sensitivity to noxious heat and a profound loss in mechanical sensitivity. Both Reln and Dab1 are highly expressed in dorsal horn areas that receive and convey nociceptive information, Laminae I-II, lateral Lamina V, and the lateral spinal nucleus (LSN). Lamina I contains both projection neurons and interneurons that express Neurokinin-1 receptors (NK1Rs) and they transmit information about noxious heat both within the dorsal horn and to the brain. Here, we ask whether the increased heat nociception in Reln and dab1 mutants is due to incorrectly positioned dorsal horn neurons that express NK1Rs. We found more NK1R-expressing neurons in Reln-/- and dab1-/- Laminae I-II than in their respective wild-type mice, and some NK1R neurons co-expressed Dab1 and the transcription factor Lmx1b, confirming their excitatory phenotype. Importantly, heat stimulation in dab1-/- mice induced Fos in incorrectly positioned NK1R neurons in Laminae I-II. Next, we asked whether these ectopically placed and noxious-heat responsive NK1R neurons participated in pain behavior. Ablation of the superficial NK1Rs with an intrathecal injection of a substance P analog conjugated to the toxin saporin (SSP-SAP) eliminated the thermal hypersensitivity of dab1-/- mice, without altering their mechanical insensitivity. These results suggest that ectopically positioned NK1R-expressing neurons underlie the heat hyperalgesia of Reelin-signaling pathway mutants, but do not contribute to their profound mechanical insensitivity.


Long-term, dynamic synaptic reorganization after GABAergic precursor cell transplantation into adult mouse spinal cord.

  • Ida J Llewellyn-Smith‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

Transplanting embryonic precursors of GABAergic neurons from the medial ganglionic eminence (MGE) into adult mouse spinal cord ameliorates mechanical and thermal hypersensitivity in peripheral nerve injury models of neuropathic pain. Although Fos and transneuronal tracing studies strongly suggest that integration of MGE-derived neurons into host spinal cord circuits underlies recovery of function, the extent to which there is synaptic integration of the transplanted cells has not been established. Here, we used electron microscopic immunocytochemistry to assess directly integration of GFP-expressing MGE-derived neuronal precursors into dorsal horn circuitry in intact, adult mice with short- (5-6 weeks) or long-term (4-6 months) transplants. We detected GFP with pre-embedding avidin-biotin-peroxidase and GABA with post-embedding immunogold labeling. At short and long times post-transplant, we found host-derived synapses on GFP-immunoreactive MGE cells bodies and dendrites. The proportion of dendrites with synaptic input increased from 50% to 80% by 6 months. In all mice, MGE-derived terminals formed synapses with GFP-negative (host) cell bodies and dendrites and, unexpectedly, with some GFP-positive (i.e., MGE-derived) dendrites, possibly reflecting autoapses or cross talk among transplanted neurons. We also observed axoaxonic appositions between MGE and host terminals. Immunogold labeling for GABA confirmed that the transplanted cells were GABAergic and that some transplanted cells received an inhibitory GABAergic input. We conclude that transplanted MGE neurons retain their GABAergic phenotype and integrate dynamically into host-transplant synaptic circuits. Taken together with our previous electrophysiological analyses, we conclude that MGE cells are not GABA pumps, but alleviate pain and itch through synaptic release of GABA.


Stimulation of synaptoneurosome glutamate release by monomeric and fibrillated α-synuclein.

  • Theodore A Sarafian‎ et al.
  • Journal of neuroscience research‎
  • 2017‎

The α-synuclein protein exists in vivo in a variety of covalently modified and aggregated forms associated with Parkinson's disease (PD) pathology. However, the specific proteoform structures involved with neuropathological disease mechanisms are not clearly defined. Since α-synuclein plays a role in presynaptic neurotransmitter release, an in vitro enzyme-based assay was developed to measure glutamate release from mouse forebrain synaptoneurosomes (SNs) enriched in synaptic endings. Glutamate measurements utilizing SNs from various mouse genotypes (WT, over-expressers, knock-outs) suggested a concentration dependence of α-synuclein on calcium/depolarization-dependent presynaptic glutamate release from forebrain terminals. In vitro reconstitution experiments with recombinant human α-synuclein proteoforms including monomers and aggregated forms (fibrils, oligomers) produced further evidence of this functional impact. Notably, brief exogenous applications of fibrillated forms of α-synuclein enhanced SN glutamate release but monomeric forms did not, suggesting preferential membrane penetration and toxicity by the aggregated forms. However, when applied to brain tissue sections just prior to homogenization, both monomeric and fibrillated forms stimulated glutamate release. Immuno-gold and transmission electron microscopy (TEM) detected exogenous fibrillated α-synuclein associated with numerous SN membranous structures including synaptic terminals. Western blots and immuno-gold TEM were consistent with SN internalization of α-synuclein. Additional studies revealed no evidence of gross disruption of SN membrane integrity or glutamate transporter function by exogenous α-synuclein. Overall excitotoxicity, due to enhanced glutamate release in the face of either overexpressed monomeric α-synuclein or extrasynaptic exposure to fibrillated α-synuclein, should be considered as a potential neuropathological pathway during the progression of PD and other synucleinopathies. © 2017 Wiley Periodicals, Inc.


Alleviation of extensive visual pathway dysfunction by a remyelinating drug in a chronic mouse model of multiple sclerosis.

  • Maria T Sekyi‎ et al.
  • Brain pathology (Zurich, Switzerland)‎
  • 2021‎

Visual deficits are among the most prevalent symptoms in patients with multiple sclerosis (MS). To understand deficits in the visual pathway during MS and potential treatment effects, we used experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. The afferent visual pathway was assessed in vivo using optical coherence tomography (OCT), electroretinography (ERG), and visually evoked cortical potentials (VEPs). Inflammation, demyelination, and neurodegeneration were examined by immunohistochemistry ex vivo. In addition, an immunomodulatory, remyelinating agent, the estrogen receptor β ligand chloroindazole (IndCl), was tested for its therapeutic potential in the visual pathway. EAE produced functional deficits in visual system electrophysiology, including suppression of ERG and VEP waveform amplitudes and increased signal latencies. Therapeutic IndCl rescued overall visual system latency by VEP but had little impact on amplitude or ERG findings relative to vehicle. Faster VEP conduction in IndCl-treated mice was associated with enhanced myelin basic protein signal in all visual system structures examined. IndCl preserved retinal ganglion cells (RGCs) and oligodendrocyte density in the prechiasmatic white matter, but similar retinal nerve fiber layer thinning by OCT was noted in vehicle and IndCl-treated mice. Although IndCl differentially attenuated leukocyte and astrocyte staining signal throughout the structures analyzed, axolemmal varicosities were observed in all visual fiber tracts of mice with EAE irrespective of treatment, suggesting impaired axonal energy homeostasis. These data support incomplete functional recovery of VEP amplitude with IndCl, as fiber tracts displayed persistent axon pathology despite remyelination-induced decreases in latencies, evidenced by reduced optic nerve g-ratio in IndCl-treated mice. Although additional studies are required, these findings demonstrate the dynamics of visual pathway dysfunction and disability during EAE, along with the importance of early treatment to mitigate EAE-induced axon damage.


Pain relief by supraspinal gabapentin requires descending noradrenergic inhibitory controls.

  • Dina L Juarez-Salinas‎ et al.
  • Pain reports‎
  • 2018‎

Gabapentin regulates pain processing by direct action on primary afferent nociceptors and dorsal horn nociresponsive neurons. Through an action at supraspinal levels, gabapentin also engages descending noradrenergic inhibitory controls that indirectly regulate spinal cord pain processing. Although direct injection of gabapentin into the anterior cingulate cortex provides pain relief independent of descending inhibitory controls, it remains unclear whether that effect is representative of what occurs when gabapentin interacts at multiple brain loci, eg, after intracerebroventricular (i.c.v.) injection.


Sciatic nerve transection triggers release and intercellular transfer of a genetically expressed macromolecular tracer in dorsal root ganglia.

  • João M Bráz‎ et al.
  • The Journal of comparative neurology‎
  • 2011‎

We recently developed a genetic transneuronal tracing approach that allows for the study of circuits that are altered by nerve injury. We generated transgenic (ZW-X) mice in which expression of a transneuronal tracer, wheat germ agglutinin (WGA), is induced in primary sensory neurons, but only after transection of their peripheral axon. By following the transneuronal transport of the tracer into the central nervous system (CNS) we can label the circuits that are engaged by the WGA-expressing damaged neurons. Here we used the ZW-X mouse line to analyze dorsal root ganglia (DRG) for intraganglionic connections between injured sensory neurons and their neighboring "intact" neurons. Because neuropeptide Y (NPY) expression is strongly induced in DRG neurons after peripheral axotomy, we crossed the ZW-X mouse line with a mouse that expresses Cre recombinase under the influence of the NPY promoter. As expected, sciatic nerve transection triggered WGA expression in NPY-positive DRG neurons, most of which are of large diameter. As expected, double labeling for ATF-3, a marker of cell bodies with damaged axons, showed that the tracer predominated in injured (i.e., axotomized) neurons. However, we also found the WGA tracer in DRG cell bodies of uninjured sensory neurons. Importantly, in the absence of nerve injury there was no intraganglionic transfer of WGA. Our results demonstrate that intraganglionic, cell-to-cell communication, via transfer of large molecules, occurs between the cell bodies of injured and neighboring noninjured primary afferent neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: