Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Identification of single nucleotide polymorphisms in the p21 (CDKN1A) gene and correlations with longevity in the Italian population.

  • Silvia Gravina‎ et al.
  • Aging‎
  • 2009‎

Longevity in humans is determined by multiple environmental and genetic factors. We have investigated possible associations between longevity and Single Nucleotide Polymorphisms (SNPs) in the p21 (CDKN1A) gene, a stress-inducible senescence-associated cell cycle inhibitor, expression of which upregulates genes implicated in several age-related diseases. By sequencing the promoter and exons of p21 in genomic DNA of ten individuals over 90 years old, we have identified 30 SNPs, many of which had not been previously characterized. A cluster of minor alleles within the -4547/-3489 bp region did not alter the basal activity or p53 responsiveness of the p21 promoter. We then compared the frequency of 41 p21 SNPs between 184 centenarians and 184 younger subjects in the Italian population. Rare alleles of two exon-derived SNPs, rs1801270 and rs1059234, were significantly under-represented among the centenarians; no significant differences were found for 39 non-exonic SNPs. SNP rs1801270 causes Ser to Arg substitution at amino acid 31 and SNP rs1059234 leads to a nucleotide change in the 3'-untranslated region. Previous studies showed that the rare alleles of these two SNPs may play a role in cancer. These p21 alleles may be potentially detrimental to longevity and therefore are rare in centenarians.


The use of whole-exome sequencing to disentangle complex phenotypes.

  • Hywel J Williams‎ et al.
  • European journal of human genetics : EJHG‎
  • 2016‎

The success of whole-exome sequencing to identify mutations causing single-gene disorders has been well documented. In contrast whole-exome sequencing has so far had limited success in the identification of variants causing more complex phenotypes that seem unlikely to be due to the disruption of a single gene. We describe a family where two male offspring of healthy first cousin parents present a complex phenotype consisting of peripheral neuropathy and bronchiectasis that has not been described previously in the literature. Due to the fact that both children had the same problems in the context of parental consanguinity we hypothesised illness resulted from either X-linked or autosomal recessive inheritance. Through the use of whole-exome sequencing we were able to simplify this complex phenotype and identified a causative mutation (p.R1070*) in the gene periaxin (PRX), a gene previously shown to cause peripheral neuropathy (Dejerine-Sottas syndrome) when this mutation is present. For the bronchiectasis phenotype we were unable to identify a causal single mutation or compound heterozygote, reflecting the heterogeneous nature of this phenotype. In conclusion, in this study we show that whole-exome sequencing has the power to disentangle complex phenotypes through the identification of causative genetic mutations for distinct clinical disorders that were previously masked.


Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome.

  • Anna C Thomas‎ et al.
  • American journal of human genetics‎
  • 2014‎

Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum.


Identification and validation of loss of function variants in clinical contexts.

  • Francesco Lescai‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2014‎

The choice of an appropriate variant calling pipeline for exome sequencing data is becoming increasingly more important in translational medicine projects and clinical contexts. Within GOSgene, which facilitates genetic analysis as part of a joint effort of the University College London and the Great Ormond Street Hospital, we aimed to optimize a variant calling pipeline suitable for our clinical context. We implemented the GATK/Queue framework and evaluated the performance of its two callers: the classical UnifiedGenotyper and the new variant discovery tool HaplotypeCaller. We performed an experimental validation of the loss-of-function (LoF) variants called by the two methods using Sequenom technology. UnifiedGenotyper showed a total validation rate of 97.6% for LoF single-nucleotide polymorphisms (SNPs) and 92.0% for insertions or deletions (INDELs), whereas HaplotypeCaller was 91.7% for SNPs and 55.9% for INDELs. We confirm that GATK/Queue is a reliable pipeline in translational medicine and clinical context. We conclude that in our working environment, UnifiedGenotyper is the caller of choice, being an accurate method, with a high validation rate of error-prone calls like LoF variants. We finally highlight the importance of experimental validation, especially for INDELs, as part of a standard pipeline in clinical environments.


Vascularisation is not necessary for gut colonisation by enteric neural crest cells.

  • Jean-Marie Delalande‎ et al.
  • Developmental biology‎
  • 2014‎

The vasculature and nervous system share striking similarities in their networked, tree-like architecture and in the way they are super-imposed in mature organs. It has previously been suggested that the intestinal microvasculature network directs the migration of enteric neural crest cells (ENCC) along the gut to promote the formation of the enteric nervous system (ENS). To investigate the inter-relationship of migrating ENCC, ENS formation and gut vascular development we combined fate-mapping of ENCC with immunolabelling and intravascular dye injection to visualise nascent blood vessel networks. We found that the enteric and vascular networks initially had very distinct patterns of development. In the foregut, ENCC migrated through areas devoid of established vascular networks. In vessel-rich areas, such as the midgut and hindgut, the distribution of migrating ENCC did not support the idea that these cells followed a pre-established vascular network. Moreover, when gut vascular development was impaired, either genetically in Vegfa(120/120) or Tie2-Cre;Nrp1(fl/-) mice or using an in vitro Wnt1-Cre;Rosa26(Yfp/+) mouse model of ENS development, ENCC still colonised the entire length of the gut, including the terminal hindgut. These results demonstrate that blood vessel networks are not necessary to guide migrating ENCC during ENS development. Conversely, in miRet(51) mice, which lack ENS in the hindgut, the vascular network in this region appeared to be normal suggesting that in early development both networks form independently of each other.


Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq.

  • Anto P Rajkumar‎ et al.
  • BMC genomics‎
  • 2015‎

Massively parallel cDNA sequencing (RNA-seq) experiments are gradually superseding microarrays in quantitative gene expression profiling. However, many biologists are uncertain about the choice of differentially expressed gene (DEG) analysis methods and the validity of cost-saving sample pooling strategies for their RNA-seq experiments. Hence, we performed experimental validation of DEGs identified by Cuffdiff2, edgeR, DESeq2 and Two-stage Poisson Model (TSPM) in a RNA-seq experiment involving mice amygdalae micro-punches, using high-throughput qPCR on independent biological replicate samples. Moreover, we sequenced RNA-pools and compared their results with sequencing corresponding individual RNA samples.


The impact of phenocopy on the genetic analysis of complex traits.

  • Francesco Lescai‎ et al.
  • PloS one‎
  • 2010‎

A consistent debate is ongoing on genome-wide association studies (GWAs). A key point is the capability to identify low-penetrance variations across the human genome. Among the phenomena reducing the power of these analyses, phenocopy level (PE) hampers very seriously the investigation of complex diseases, as well known in neurological disorders, cancer, and likely of primary importance in human ageing. PE seems to be the norm, rather than the exception, especially when considering the role of epigenetics and environmental factors towards phenotype. Despite some attempts, no recognized solution has been proposed, particularly to estimate the effects of phenocopies on the study planning or its analysis design. We present a simulation, where we attempt to define more precisely how phenocopy impacts on different analytical methods under different scenarios. With our approach the critical role of phenocopy emerges, and the more the PE level increases the more the initial difficulty in detecting gene-gene interactions is amplified. In particular, our results show that strong main effects are not hampered by the presence of an increasing amount of phenocopy in the study sample, despite progressively reducing the significance of the association, if the study is sufficiently powered. On the opposite, when purely epistatic effects are simulated, the capability of identifying the association depends on several parameters, such as the strength of the interaction between the polymorphic variants, the penetrance of the polymorphism and the alleles (minor or major) which produce the combined effect and their frequency in the population. We conclude that the neglect of the possible presence of phenocopies in complex traits heavily affects the analysis of their genetic data.


The cilia protein IFT88 is required for spindle orientation in mitosis.

  • Benedicte Delaval‎ et al.
  • Nature cell biology‎
  • 2011‎

Cilia dysfunction has long been associated with cyst formation and ciliopathies. More recently, misoriented cell division has been observed in cystic kidneys, but the molecular mechanism leading to this abnormality remains unclear. Proteins of the intraflagellar transport (IFT) machinery are linked to cystogenesis and are required for cilia formation in non-cycling cells. Several IFT proteins also localize to spindle poles in mitosis, indicating uncharacterized functions for these proteins in dividing cells. Here, we show that IFT88 depletion induces mitotic defects in human cultured cells, in kidney cells from the IFT88 mouse mutant Tg737(orpk) and in zebrafish embryos. In mitosis, IFT88 is part of a dynein1-driven complex that transports peripheral microtubule clusters containing microtubule-nucleating proteins to spindle poles to ensure proper formation of astral microtubule arrays and thus proper spindle orientation. This work identifies a mitotic mechanism for a cilia protein in the orientation of cell division and has important implications for the etiology of ciliopathies.


Robertsonian Fusion and Centromere Repositioning Contributed to the Formation of Satellite-free Centromeres During the Evolution of Zebras.

  • Eleonora Cappelletti‎ et al.
  • Molecular biology and evolution‎
  • 2022‎

Centromeres are epigenetically specified by the histone H3 variant CENP-A and typically associated with highly repetitive satellite DNA. We previously discovered natural satellite-free neocentromeres in Equus caballus and Equus asinus. Here, through ChIP-seq with an anti-CENP-A antibody, we found an extraordinarily high number of centromeres lacking satellite DNA in the zebras Equus burchelli (15 of 22) and Equus grevyi (13 of 23), demonstrating that the absence of satellite DNA at the majority of centromeres is compatible with genome stability and species survival and challenging the role of satellite DNA in centromere function. Nine satellite-free centromeres are shared between the two species in agreement with their recent separation. We assembled all centromeric regions and improved the reference genome of E. burchelli. Sequence analysis of the CENP-A binding domains revealed that they are LINE-1 and AT-rich with four of them showing DNA amplification. In the two zebras, satellite-free centromeres emerged from centromere repositioning or following Robertsonian fusion. In five chromosomes, the centromeric function arose near the fusion points, which are located within regions marked by traces of ancestral pericentromeric sequences. Therefore, besides centromere repositioning, Robertsonian fusions are an important source of satellite-free centromeres during evolution. Finally, in one case, a satellite-free centromere was seeded on an inversion breakpoint. At 11 chromosomes, whose primary constrictions seemed to be associated with satellite repeats by cytogenetic analysis, satellite-free neocentromeres were instead located near the ancestral inactivated satellite-based centromeres; therefore, the centromeric function has shifted away from a satellite repeat containing locus to a satellite-free new position.


The CXCL12/CXCR4 Axis Plays a Critical Role in Coronary Artery Development.

  • Sarah Ivins‎ et al.
  • Developmental cell‎
  • 2015‎

The chemokine CXCL12 and its receptor CXCR4 have many functions during embryonic and post-natal life. We used murine models to investigate the role of CXCL12/CXCR4 signaling in cardiac development and found that embryonic Cxcl12-null hearts lacked intra-ventricular coronary arteries (CAs) and exhibited absent or misplaced CA stems. We traced the origin of this phenotype to defects in the early stages of CA stem formation. CA stems derive from the peritruncal plexus, an encircling capillary network that invades the wall of the developing aorta. We showed that CXCL12 is present at high levels in the outflow tract, while peritruncal endothelial cells (ECs) express CXCR4. In the absence of CXCL12, ECs were abnormally localized and impaired in their ability to anastomose with the aortic lumen. We propose that CXCL12 is required for connection of peritruncal plexus ECs to the aortic endothelium and thus plays a vital role in CA formation.


The neural milieu of the developing choroid plexus: neural stem cells, neurons and innervation.

  • Weerapong Prasongchean‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

The choroid plexus produces cerebrospinal fluid and plays an important role in brain homeostasis both pre and postnatally. In vitro studies have suggested that cells from adult choroid plexus have stem/progenitor cell-like properties. Our initial aim was to investigate whether such a cell population is present in vivo during development of the choroid plexus, focusing mainly on the chick choroid plexus. Cells expressing neural markers were indeed present in the choroid plexus of chick and also those of rodent and human embryos, both within their epithelium and mesenchyme. ß3-tubulin-positive cells with neuronal morphology could be detected as early as at E8 in chick choroid plexus and their morphological complexity increased with development. Whole mount immunochemistry demonstrated the presence of neurons throughout choroid plexus development and they appeared to be mainly catecholaminergic, as indicated by tyrosine-hydroxylase reactivity. The presence of cells co-labeling for BrdU and the neuroblast marker, doublecortin, in organotypic choroid plexus cultures supported the hypothesis that neurogenesis can occur from neural precursors within the developing choroid plexus. Furthermore, we found that extrinsic innervation is present in the developing choroid plexus, unlike previously suggested. Altogether, our data are consistent with the presence of neural progenitors within the choroid plexus, suggest that at least some of the choroid plexus neurons are born locally, and show for the first time that choroid plexus innervation occurs prenatally. Hence, we propose the existence of a complex neural regulatory network within the developing choroid plexus that may play a crucial role in modulating its function during development as well as throughout life.


Rho-kinase-dependent actin turnover and actomyosin disassembly are necessary for mouse spinal neural tube closure.

  • Sarah Escuin‎ et al.
  • Journal of cell science‎
  • 2015‎

The cytoskeleton is widely considered essential for neurulation, yet the mouse spinal neural tube can close despite genetic and non-genetic disruption of the cytoskeleton. To investigate this apparent contradiction, we applied cytoskeletal inhibitors to mouse embryos in culture. Preventing actomyosin cross-linking, F-actin assembly or myosin II contractile activity did not disrupt spinal closure. In contrast, inhibiting Rho kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) or blocking F-actin disassembly prevented closure, with apical F-actin accumulation and adherens junction disturbance in the neuroepithelium. Cofilin-1-null embryos yielded a similar phenotype, supporting the hypothesis that there is a key role for actin turnover. Co-exposure to Blebbistatin rescued the neurulation defects caused by RhoA inhibition, whereas an inhibitor of myosin light chain kinase, ML-7, had no such effect. We conclude that regulation of RhoA, Rho kinase, LIM kinase and cofilin signalling is necessary for spinal neural tube closure through precise control of neuroepithelial actin turnover and actomyosin disassembly. In contrast, actomyosin assembly and myosin ATPase activity are not limiting for closure.


Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants.

  • F Kyle Satterstrom‎ et al.
  • Nature neuroscience‎
  • 2019‎

The exome sequences of approximately 8,000 children with autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD) and 5,000 controls were analyzed, finding that individuals with ASD and individuals with ADHD had a similar burden of rare protein-truncating variants in evolutionarily constrained genes, both significantly higher than controls. This motivated a combined analysis across ASD and ADHD, identifying microtubule-associated protein 1A (MAP1A) as a new exome-wide significant gene conferring risk for childhood psychiatric disorders.


AimSeg: A machine-learning-aided tool for axon, inner tongue and myelin segmentation.

  • Pau Carrillo-Barberà‎ et al.
  • PLoS computational biology‎
  • 2023‎

Electron microscopy (EM) images of axons and their ensheathing myelin from both the central and peripheral nervous system are used for assessing myelin formation, degeneration (demyelination) and regeneration (remyelination). The g-ratio is the gold standard measure of assessing myelin thickness and quality, and traditionally is determined from measurements made manually from EM images-a time-consuming endeavour with limited reproducibility. These measurements have also historically neglected the innermost uncompacted myelin sheath, known as the inner tongue. Nonetheless, the inner tongue has been shown to be important for myelin growth and some studies have reported that certain conditions can elicit its enlargement. Ignoring this fact may bias the standard g-ratio analysis, whereas quantifying the uncompacted myelin has the potential to provide novel insights in the myelin field. In this regard, we have developed AimSeg, a bioimage analysis tool for axon, inner tongue and myelin segmentation. Aided by machine learning classifiers trained on transmission EM (TEM) images of tissue undergoing remyelination, AimSeg can be used either as an automated workflow or as a user-assisted segmentation tool. Validation results on TEM data from both healthy and remyelinating samples show good performance in segmenting all three fibre components, with the assisted segmentation showing the potential for further improvement with minimal user intervention. This results in a considerable reduction in time for analysis compared with manual annotation. AimSeg could also be used to build larger, high quality ground truth datasets to train novel deep learning models. Implemented in Fiji, AimSeg can use machine learning classifiers trained in ilastik. This, combined with a user-friendly interface and the ability to quantify uncompacted myelin, makes AimSeg a unique tool to assess myelin growth.


Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus.

  • Zhan Su‎ et al.
  • Nature genetics‎
  • 2012‎

Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (Pcombined=4.09×10(-9); odds ratio (OR)=1.21, 95% confidence interval (CI)=1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (Pcombined=2.74×10(-10); OR=1.14, 95% CI=1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus.


Mutation of SALL2 causes recessive ocular coloboma in humans and mice.

  • Daniel Kelberman‎ et al.
  • Human molecular genetics‎
  • 2014‎

Ocular coloboma is a congenital defect resulting from failure of normal closure of the optic fissure during embryonic eye development. This birth defect causes childhood blindness worldwide, yet the genetic etiology is poorly understood. Here, we identified a novel homozygous mutation in the SALL2 gene in members of a consanguineous family affected with non-syndromic ocular coloboma variably affecting the iris and retina. This mutation, c.85G>T, introduces a premature termination codon (p.Glu29*) predicted to truncate the SALL2 protein so that it lacks three clusters of zinc-finger motifs that are essential for DNA-binding activity. This discovery identifies SALL2 as the third member of the Drosophila homeotic Spalt-like family of developmental transcription factor genes implicated in human disease. SALL2 is expressed in the developing human retina at the time of, and subsequent to, optic fissure closure. Analysis of Sall2-deficient mouse embryos revealed delayed apposition of the optic fissure margins and the persistence of an anterior retinal coloboma phenotype after birth. Sall2-deficient embryos displayed correct posterior closure toward the optic nerve head, and upon contact of the fissure margins, dissolution of the basal lamina occurred and PAX2, known to be critical for this process, was expressed normally. Anterior closure was disrupted with the fissure margins failing to meet, or in some cases misaligning leading to a retinal lesion. These observations demonstrate, for the first time, a role for SALL2 in eye morphogenesis and that loss of function of the gene causes ocular coloboma in humans and mice.


Omics in a Digital World: The Role of Bioinformatics in Providing New Insights Into Human Aging.

  • Serena Dato‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Aging is a complex phenotype influenced by a combination of genetic and environmental factors. Although many studies addressed its cellular and physiological age-related changes, the molecular causes of aging remain undetermined. Considering the biological complexity and heterogeneity of the aging process, it is now clear that full understanding of mechanisms underlying aging can only be achieved through the integration of different data types and sources, and with new computational methods capable to achieve such integration.


Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios.

  • Søren Besenbacher‎ et al.
  • Nature communications‎
  • 2015‎

Building a population-specific catalogue of single nucleotide variants (SNVs), indels and structural variants (SVs) with frequencies, termed a national pan-genome, is critical for further advancing clinical and public health genetics in large cohorts. Here we report a Danish pan-genome obtained from sequencing 10 trios to high depth (50 × ). We report 536k novel SNVs and 283k novel short indels from mapping approaches and develop a population-wide de novo assembly approach to identify 132k novel indels larger than 10 nucleotides with low false discovery rates. We identify a higher proportion of indels and SVs than previous efforts showing the merits of high coverage and de novo assembly approaches. In addition, we use trio information to identify de novo mutations and use a probabilistic method to provide direct estimates of 1.27e-8 and 1.5e-9 per nucleotide per generation for SNVs and indels, respectively.


The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes.

  • Aoife M Waters‎ et al.
  • Journal of medical genetics‎
  • 2015‎

Mutations in microtubule-regulating genes are associated with disorders of neuronal migration and microcephaly. Regulation of centriole length has been shown to underlie the pathogenesis of certain ciliopathy phenotypes. Using a next-generation sequencing approach, we identified mutations in a novel centriolar disease gene in a kindred with an embryonic lethal ciliopathy phenotype and in a patient with primary microcephaly.


Characterisation and validation of insertions and deletions in 173 patient exomes.

  • Francesco Lescai‎ et al.
  • PloS one‎
  • 2012‎

Recent advances in genomics technologies have spurred unprecedented efforts in genome and exome re-sequencing aiming to unravel the genetic component of rare and complex disorders. While in rare disorders this allowed the identification of novel causal genes, the missing heritability paradox in complex diseases remains so far elusive. Despite rapid advances of next-generation sequencing, both the technology and the analysis of the data it produces are in its infancy. At present there is abundant knowledge pertaining to the role of rare single nucleotide variants (SNVs) in rare disorders and of common SNVs in common disorders. Although the 1,000 genome project has clearly highlighted the prevalence of rare variants and more complex variants (e.g. insertions, deletions), their role in disease is as yet far from elucidated.We set out to analyse the properties of sequence variants identified in a comprehensive collection of exome re-sequencing studies performed on samples from patients affected by a broad range of complex and rare diseases (N = 173). Given the known potential for Loss of Function (LoF) variants to be false positive, we performed an extensive validation of the common, rare and private LoF variants identified, which indicated that most of the private and rare variants identified were indeed true, while common novel variants had a significantly higher false positive rate. Our results indicated a strong enrichment of very low-frequency insertion/deletion variants, so far under-investigated, which might be difficult to capture with low coverage and imputation approaches and for which most of study designs would be under-powered. These insertions and deletions might play a significant role in disease genetics, contributing specifically to the underlining rare and private variation predicted to be discovered through next generation sequencing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: