Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Association of variants in RETN with plasma resistin levels and diabetes-related traits in the Framingham Offspring Study.

  • Marie-France Hivert‎ et al.
  • Diabetes‎
  • 2009‎

The RETN gene encodes the adipokine resistin. Associations of RETN with plasma resistin levels, type 2 diabetes, and related metabolic traits have been inconsistent. Using comprehensive linkage disequilibrium mapping, we genotyped tag single nucleotide polymorphisms (SNPs) in RETN and tested associations with plasma resistin levels, risk of diabetes, and glycemic traits.


Haplotype structure of the ENPP1 Gene and Nominal Association of the K121Q missense single nucleotide polymorphism with glycemic traits in the Framingham Heart Study.

  • Elliot S Stolerman‎ et al.
  • Diabetes‎
  • 2008‎

A recent meta-analysis demonstrated a nominal association of the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) K-->Q missense single nucleotide polymorphism (SNP) at position 121 with type 2 diabetes. We set out to confirm the association of ENPP1 K121Q with hyperglycemia, expand this association to insulin resistance traits, and determine whether the association stems from K121Q or another variant in linkage disequilibrium with it.


ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations.

  • Anne-Sofie Graae‎ et al.
  • Diabetes‎
  • 2019‎

The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin β1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.


Muscle-derived angiopoietin-like protein 4 is induced by fatty acids via peroxisome proliferator-activated receptor (PPAR)-delta and is of metabolic relevance in humans.

  • Harald Staiger‎ et al.
  • Diabetes‎
  • 2009‎

Long-chain fatty acids (LCFAs) contribute to metabolic homeostasis in part via gene regulation. This study's objective was to identify novel LCFA target genes in human skeletal muscle cells (myotubes).


Association of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion.

  • Karsten Müssig‎ et al.
  • Diabetes‎
  • 2009‎

KCNQ1 gene polymorphisms are associated with type 2 diabetes. This linkage appears to be mediated by altered beta-cell function. In an attempt to study underlying mechanisms, we examined the effect of four KCNQ1 single nucleotide polymorphisms (SNPs) on insulin secretion upon different stimuli.


Individual stearoyl-coa desaturase 1 expression modulates endoplasmic reticulum stress and inflammation in human myotubes and is associated with skeletal muscle lipid storage and insulin sensitivity in vivo.

  • Andreas Peter‎ et al.
  • Diabetes‎
  • 2009‎

Increased plasma levels of free fatty acids occur in obesity and type 2 diabetes and contribute to the development of insulin resistance. Saturated fatty acids (SFAs) such as palmitate especially have lipotoxic effects leading to endoplasmatic reticulum (ER) stress, inflammation, and insulin resistance. Stearoyl-CoA desaturase 1 (SCD1) plays a key role in preventing lipotoxic effects, as it converts SFAs to less harmful monounsaturated fatty acids. Here, we tested the hypothesis that individual differences in the regulation of SCD1 expression by palmitate exist and influence insulin sensitivity and the cellular response to palmitate.


Common variants in the adiponectin gene (ADIPOQ) associated with plasma adiponectin levels, type 2 diabetes, and diabetes-related quantitative traits: the Framingham Offspring Study.

  • Marie-France Hivert‎ et al.
  • Diabetes‎
  • 2008‎

Variants in ADIPOQ have been inconsistently associated with adiponectin levels or diabetes. Using comprehensive linkage disequilibrium mapping, we genotyped single nucleotide polymorphisms (SNPs) in ADIPOQ to evaluate the association of common variants with adiponectin levels and risk of diabetes.


Genetic Loci and Physiologic Pathways Involved in Gestational Diabetes Mellitus Implicated Through Clustering.

  • Camille E Powe‎ et al.
  • Diabetes‎
  • 2021‎

Hundreds of common genetic variants acting through distinguishable physiologic pathways influence the risk of type 2 diabetes (T2D). It is unknown to what extent the physiology underlying gestational diabetes mellitus (GDM) is distinct from that underlying T2D. In this study of >5,000 pregnant women from three cohorts, we aimed to identify physiologically related groups of maternal variants associated with GDM using two complementary approaches that were based on Bayesian nonnegative matrix factorization (bNMF) clustering. First, we tested five bNMF clusters of maternal T2D-associated variants grouped on the basis of physiology outside of pregnancy for association with GDM. We found that cluster polygenic scores representing genetic determinants of reduced β-cell function and abnormal hepatic lipid metabolism were associated with GDM; these clusters were not associated with infant birth weight. Second, we derived bNMF clusters of maternal variants on the basis of pregnancy physiology and tested these clusters for association with GDM. We identified a cluster that was strongly associated with GDM as well as associated with higher infant birth weight. The effect size for this cluster's association with GDM appeared greater than that for T2D. Our findings imply that the genetic and physiologic pathways that lead to GDM differ, at least in part, from those that lead to T2D.


Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

  • Rona J Strawbridge‎ et al.
  • Diabetes‎
  • 2011‎

Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology.


Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci.

  • Geoffrey A Walford‎ et al.
  • Diabetes‎
  • 2016‎

Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: rs13422522 (NYAP2; P = 8.87 × 10(-11)), rs12454712 (BCL2; P = 2.7 × 10(-8)), and rs10506418 (FAM19A2; P = 1.9 × 10(-8)). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci.


A Partial Loss-of-Function Variant in AKT2 Is Associated With Reduced Insulin-Mediated Glucose Uptake in Multiple Insulin-Sensitive Tissues: A Genotype-Based Callback Positron Emission Tomography Study.

  • Aino Latva-Rasku‎ et al.
  • Diabetes‎
  • 2018‎

Rare fully penetrant mutations in AKT2 are an established cause of monogenic disorders of glucose metabolism. Recently, a novel partial loss-of-function AKT2 coding variant (p.Pro50Thr) was identified that is nearly specific to Finns (frequency 1.1%), with the low-frequency allele associated with an increase in fasting plasma insulin level and risk of type 2 diabetes. The effects of the p.Pro50Thr AKT2 variant (p.P50T/AKT2) on insulin-stimulated glucose uptake (GU) in the whole body and in different tissues have not previously been investigated. We identified carriers (N = 20) and matched noncarriers (N = 25) for this allele in the population-based Metabolic Syndrome in Men (METSIM)study and invited these individuals back for positron emission tomography study with [18F]-fluorodeoxyglucose during euglycemic hyperinsulinemia. When we compared p.P50T/AKT2 carriers to noncarriers, we found a 39.4% reduction in whole-body GU (P = 0.006) and a 55.6% increase in the rate of endogenous glucose production (P = 0.038). We found significant reductions in GU in multiple tissues-skeletal muscle (36.4%), liver (16.1%), brown adipose (29.7%), and bone marrow (32.9%)-and increases of 16.8-19.1% in seven tested brain regions. These data demonstrate that the p.P50T substitution of AKT2 influences insulin-mediated GU in multiple insulin-sensitive tissues and may explain, at least in part, the increased risk of type 2 diabetes in p.P50T/AKT2 carriers.


Relationships of circulating sex hormone-binding globulin with metabolic traits in humans.

  • Andreas Peter‎ et al.
  • Diabetes‎
  • 2010‎

Recent data suggested that sex hormone-binding globulin (SHBG) levels decrease when fat accumulates in the liver and that circulating SHBG may be causally involved in the pathogenesis of type 2 diabetes in humans. In the present study, we investigated mechanisms by which high SHBG may prevent development to diabetes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: