Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases.

  • Jeffrey I Boucher‎ et al.
  • eLife‎
  • 2014‎

Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this 'specificity residue' to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.


Analysis of the human immunodeficiency virus-1 RNA packageome.

  • Matthew J Eckwahl‎ et al.
  • RNA (New York, N.Y.)‎
  • 2016‎

All retroviruses package cellular RNAs into virions. Studies of murine leukemia virus (MLV) revealed that the major host cell RNAs encapsidated by this simple retrovirus were LTR retrotransposons and noncoding RNAs (ncRNAs). Several classes of ncRNAs appeared to be packaged by MLV shortly after synthesis, as precursors to tRNAs, small nuclear RNAs, and small nucleolar RNAs were all enriched in virions. To determine the extent to which the human immunodeficiency virus (HIV-1) packages similar RNAs, we used high-throughput sequencing to characterize the RNAs within infectious HIV-1 virions produced in CEM-SS T lymphoblastoid cells. We report that the most abundant cellular RNAs in HIV-1 virions are 7SL RNA and transcripts from numerous divergent and truncated members of the long interspersed element (LINE) and short interspersed element (SINE) families of retrotransposons. We also detected precursors to several tRNAs and small nuclear RNAs as well as transcripts derived from the ribosomal DNA (rDNA) intergenic spacers. We show that packaging of a pre-tRNA requires the nuclear export receptor Exportin 5, indicating that HIV-1 recruits at least some newly made ncRNAs in the cytoplasm. Together, our work identifies the set of RNAs packaged by HIV-1 and reveals that early steps in HIV-1 assembly intersect with host cell ncRNA biogenesis pathways.


Stable integrant-specific differences in bimodal HIV-1 expression patterns revealed by high-throughput analysis.

  • David F Read‎ et al.
  • PLoS pathogens‎
  • 2019‎

HIV-1 gene expression is regulated by host and viral factors that interact with viral motifs and is influenced by proviral integration sites. Here, expression variation among integrants was followed for hundreds of individual proviral clones within polyclonal populations throughout successive rounds of virus and cultured cell replication, with limited findings using CD4+ cells from donor blood consistent with observations in immortalized cells. Tracking clonal behavior by proviral "zip codes" indicated that mutational inactivation during reverse transcription was rare, while clonal expansion and proviral expression states varied widely. By sorting for provirus expression using a GFP reporter in the nef open reading frame, distinct clone-specific variation in on/off proportions were observed that spanned three orders of magnitude. Tracking GFP phenotypes over time revealed that as cells divided, their progeny alternated between HIV transcriptional activity and non-activity. Despite these phenotypic oscillations, the overall GFP+ population within each clone was remarkably stable, with clones maintaining clone-specific equilibrium mixtures of GFP+ and GFP- cells. Integration sites were analyzed for correlations between genomic features and the epigenetic phenomena described here. Integrants inserted in the sense orientation of genes were more frequently found to be GFP negative than those in the antisense orientation, and clones with high GFP+ proportions were more distal to repressive H3K9me3 peaks than low GFP+ clones. Clones with low frequencies of GFP positivity appeared to expand more rapidly than clones for which most cells were GFP+, even though the tested proviruses were Vpr-. Thus, much of the increase in the GFP- population in these polyclonal pools over time reflected differential clonal expansion. Together, these results underscore the temporal and quantitative variability in HIV-1 gene expression among proviral clones that are conferred in the absence of metabolic or cell-type dependent variability, and shed light on cell-intrinsic layers of regulation that affect HIV-1 population dynamics.


Structure of an insect gustatory receptor.

  • Heather M Frank‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Gustatory Receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors. However, GR structures have not been experimentally determined. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect Olfactory Receptors (ORs). Upon fructose binding, BmGr9's ion channel gate opens through helix S7b movements. In contrast to ORs, BmGR9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also unlike ORs, fructose binding by BmGr9 involves helix S5 and a binding pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with distinct ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.


Gradual neofunctionalization in the convergent evolution of trichomonad lactate and malate dehydrogenases.

  • Phillip A Steindel‎ et al.
  • Protein science : a publication of the Protein Society‎
  • 2016‎

Lactate and malate dehydrogenases (LDH and MDH) are homologous, core metabolic enzymes common to nearly all living organisms. LDHs have evolved convergently from MDHs at least four times, achieving altered substrate specificity by a different mechanism each time. For instance, the LDH of anaerobic trichomonad parasites recently evolved independently from an ancestral trichomonad MDH by gene duplication. LDH plays a central role in trichomonad metabolism by catalyzing the reduction of pyruvate to lactate, thereby regenerating the NAD+ required for glycolysis. Using ancestral reconstruction methods, we identified the biochemical and evolutionary mechanisms responsible for this convergent event. The last common ancestor of these enzymes was a highly specific MDH, similar to modern trichomonad MDHs. In contrast, the LDH lineage evolved promiscuous activity by relaxing specificity in a gradual process of neofunctionalization involving one highly detrimental substitution at the "specificity residue" (R91L) and many additional mutations of small effect. L91 has different functional consequences in LDHs and in MDHs, indicating a prominent role for epistasis. Crystal structures of modern-day and ancestral enzymes show that the evolution of substrate specificity paralleled structural changes in dimerization and α-helix orientation. The relatively small "specificity residue" of the trichomonad LDHs can accommodate a range of substrate sizes and may permit solvent to access the active site, both of which promote substrate promiscuity. The trichomonad LDHs present a multi-faceted counterpoint to the independent evolution of LDHs in other organisms and illustrate the diverse mechanisms by which protein function, structure, and stability coevolve.


Stability and conformation of the dimeric HIV-1 genomic RNA 5'UTR.

  • Robert J Blakemore‎ et al.
  • Biophysical journal‎
  • 2021‎

During HIV-1 assembly, the viral Gag polyprotein specifically selects the dimeric RNA genome for packaging into new virions. The 5' untranslated region (5'UTR) of the dimeric genome may adopt a conformation that is optimal for recognition by Gag. Further conformational rearrangement of the 5'UTR, promoted by the nucleocapsid (NC) domain of Gag, is predicted during virus maturation. Two 5'UTR dimer conformations, the kissing dimer (KD) and the extended dimer (ED), have been identified in vitro, which differ in the extent of intermolecular basepairing. Whether 5'UTRs from different HIV-1 strains with distinct sequences have access to the same dimer conformations has not been determined. Here, we applied fluorescence cross-correlation spectroscopy and single-molecule Förster resonance energy transfer imaging to demonstrate that 5'UTRs from two different HIV-1 subtypes form (KDs) with divergent stabilities. We further show that both 5'UTRs convert to a stable dimer in the presence of the viral NC protein, adopting a conformation consistent with extensive intermolecular contacts. These results support a unified model in which the genomes of diverse HIV-1 strains adopt an ED conformation.


5'-Cap sequestration is an essential determinant of HIV-1 genome packaging.

  • Pengfei Ding‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

HIV-1 selectively packages two copies of its 5'-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5' leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5' leader. ΨCES lacks a 5'-tandem hairpin element that sequesters the 5' cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5' ribozyme to ΨCES to enable cotranscriptional shedding of the 5' cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5' cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5'-capped RNA genomes.


Structure of a conserved retroviral RNA packaging element by NMR spectroscopy and cryo-electron tomography.

  • Yasuyuki Miyazaki‎ et al.
  • Journal of molecular biology‎
  • 2010‎

The 5'-untranslated regions of all gammaretroviruses contain a conserved "double-hairpin motif" (Ψ(CD)) that is required for genome packaging. Both hairpins (SL-C and SL-D) contain GACG tetraloops that, in isolated RNAs, are capable of forming "kissing" interactions stabilized by two intermolecular G-C base pairs. We have determined the three-dimensional structure of the double hairpin from the Moloney murine leukemia virus ([Ψ(CD)](2), 132 nt, 42.8 kDa) using a (2)H-edited NMR-spectroscopy-based approach. This approach enabled the detection of (1)H-(1)H dipolar interactions that were not observed in previous studies of isolated SL-C and SL-D hairpin RNAs using traditional (1)H-(1)H correlated and (1)H-(13)C-edited NMR methods. The hairpins participate in intermolecular cross-kissing interactions (SL-C to SL-D' and SLC' to SL-D) and stack in an end-to-end manner (SL-C to SL-D and SL-C' to SL-D') that gives rise to an elongated overall shape (ca 95 Å×45 Å×25 Å). The global structure was confirmed by cryo-electron tomography (cryo-ET), making [Ψ(CD)](2) simultaneously the smallest RNA to be structurally characterized to date by cryo-ET and among the largest to be determined by NMR. Our findings suggest that, in addition to promoting dimerization, [Ψ(CD)](2) functions as a scaffold that helps initiate virus assembly by exposing a cluster of conserved UCUG elements for binding to the cognate nucleocapsid domains of assembling viral Gag proteins.


Resolution of Specific Nucleotide Mismatches by Wild-Type and AZT-Resistant Reverse Transcriptases during HIV-1 Replication.

  • Siarhei Kharytonchyk‎ et al.
  • Journal of molecular biology‎
  • 2016‎

A key contributor to HIV-1 genetic variation is reverse transcriptase errors. Some mutations result because reverse transcriptase (RT) lacks 3' to 5' proofreading exonuclease and can extend mismatches. However, RT also excises terminal nucleotides to a limited extent, and this activity contributes to AZT resistance. Because HIV-1 mismatch resolution has been studied in vitro but only indirectly during replication, we developed a novel system to study mismatched base pair resolution during HIV-1 replication in cultured cells using vectors that force template switching at defined locations. These vectors generated mismatched reverse transcription intermediates, with proviral products diagnostic of mismatch resolution mechanisms. Outcomes for wild-type (WT) RT and an AZT-resistant (AZT(R)) RT containing a thymidine analog mutation set-D67N, K70R, D215F, and K219Q-were compared. AZT(R) RT did not excise terminal nucleotides more frequently than WT, and for the majority of tested mismatches, both WT and AZT(R) RTs extended mismatches in more than 90% of proviruses. However, striking enzyme-specific differences were observed for one mispair, with WT RT preferentially resolving dC-rC pairs either by excising the mismatched base or switching templates prematurely, while AZT(R) RT primarily misaligned the primer strand, causing deletions via dislocation mutagenesis. Overall, the results confirmed HIV-1 RT's high capacity for mismatch extension during virus replication and revealed dramatic differences in aberrant intermediate resolution repertoires between WT and AZT(R) RTs on one mismatched replication intermediate. Correlating mismatch extension frequencies observed here with reported viral mutation rates suggests a complex interplay of nucleotide discrimination and mismatch extension drives HIV-1 mutagenesis.


Bimodal Expression Patterns, and Not Viral Burst Sizes, Predict the Effects of Vpr on HIV-1 Proviral Populations in Jurkat Cells.

  • Edmond Atindaana‎ et al.
  • mBio‎
  • 2022‎

Integration site landscapes, clonal dynamics, and latency reversal with or without vpr were compared in HIV-1-infected Jurkat cell populations, and the properties of individual clones were defined. Clones differed in fractions of long terminal repeat (LTR)-active daughter cells, with some clones containing few to no LTR-active cells, while almost all cells were LTR active for others. Clones varied over 4 orders of magnitude in virus release per active cell. Proviruses in largely LTR-active clones were closer to preexisting enhancers and promoters than low-LTR-active clones. Unsurprisingly, major vpr+ clones contained fewer LTR-active cells than vpr- clones, and predominant vpr+ proviruses were farther from enhancers and promoters than those in vpr- pools. Distances to these marks among intact proviruses previously reported for antiretroviral therapy (ART)-suppressed patients revealed that patient integration sites were more similar to those in the vpr+ pool than to vpr- integrants. Complementing vpr-defective proviruses with vpr led to the rapid loss of highly LTR-active clones, indicating that the effect of Vpr on proviral populations occurred after integration. However, major clones in the complemented pool and its vpr- parent population did not differ in burst sizes. When the latency reactivation agents prostratin and JQ1 were applied separately or in combination, vpr+ and vpr- population-wide trends were similar, with dual-treatment enhancement being due in part to reactivated clones that did not respond to either drug applied separately. However, the expression signatures of individual clones differed between populations. These observations highlight how Vpr, exerting selective pressure on proviral epigenetic variation, can shape integration site landscapes, proviral expression patterns, and reactivation properties. IMPORTANCE A bedrock assumption in HIV-1 population modeling is that all active cells release the same amount of virus. However, the findings here revealed that when HIV-infected cells expand into clones, each clone differs in virus production. Reasoning that this variation in expression patterns constituted a population of clones from which differing subsets would prevail under differing environmental conditions, the cytotoxic HIV-1 protein Vpr was introduced, and population dynamics and expression properties were compared in the presence and absence of Vpr. The results showed that whereas most clones produced fairly continuous levels of virus in the absence of Vpr, its presence selected for a distinct subset of clones with properties reminiscent of persistent populations in patients, suggesting the possibility that the interclonal variation in expression patterns observed in culture may contribute to proviral persistence in vivo.


HIV-1 spliced RNAs display transcription start site bias.

  • Jackie M Esquiaqui‎ et al.
  • RNA (New York, N.Y.)‎
  • 2020‎

Human immunodeficiency virus type 1 (HIV-1) transcripts have three fates: to serve as genomic RNAs, unspliced mRNAs, or spliced subgenomic mRNAs. Recent structural studies have shown that sequences near the 5' end of HIV-1 RNA can adopt at least two alternate three-dimensional conformations, and that these structures dictate genome versus unspliced mRNA fates. HIV-1's use of alternate transcription start sites (TSS) can influence which RNA conformer is generated, and this choice, in turn, dictates the fate of the unspliced RNA. The structural context of HIV-1's major 5' splice site differs in these two RNA conformers, suggesting that the conformers may differ in their ability to support HIV-1 splicing events. Here, we tested the hypothesis that TSS that shift the RNA monomer/dimer structural equilibrium away from the splice site sequestering dimer-competent fold would favor splicing. Consistent with this hypothesis, the results showed that the 5' ends of spliced HIV-1 RNAs were enriched in 3GCap structures and depleted of 1GCap RNAs relative to the total intracellular RNA population. These findings expand the functional significance of HIV-1 RNA structural dynamics by demonstrating roles for RNA structure in defining all three classes of HIV-1 RNAs, and suggest that HIV-1 TSS choice initiates a cascade of molecular events that dictate the fates of nascent HIV-1 RNAs.


A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway.

  • Matthew J Eckwahl‎ et al.
  • Genes & development‎
  • 2015‎

Although all retroviruses recruit host cell RNAs into virions, both the spectrum of RNAs encapsidated and the mechanisms by which they are recruited remain largely unknown. Here, we used high-throughput sequencing to obtain a comprehensive description of the RNAs packaged by a model retrovirus, murine leukemia virus. The major encapsidated host RNAs are noncoding RNAs (ncRNAs) and members of the VL30 class of endogenous retroviruses. Remarkably, although Moloney leukemia virus (MLV) assembles in the cytoplasm, precursors to specific tRNAs, small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs) are all enriched in virions. Consistent with their cytoplasmic recruitment, packaging of both pre-tRNAs and U6 snRNA requires the nuclear export receptor Exportin-5. Adenylated and uridylated forms of these RNAs accumulate in cells and virions when the cytoplasmic exoribonuclease DIS3L2 and subunits of the RNA exosome are depleted. Together, our data reveal that MLV recruits RNAs from a novel host cell surveillance pathway in which unprocessed and unneeded nuclear ncRNAs are exported to the cytoplasm for degradation.


Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception.

  • Kyeongjin Kang‎ et al.
  • Nature‎
  • 2010‎

Chemical nociception, the detection of tissue-damaging chemicals, is important for animal survival and causes human pain and inflammation, but its evolutionary origins are largely unknown. Reactive electrophiles are a class of noxious compounds humans find pungent and irritating, such as allyl isothiocyanate (in wasabi) and acrolein (in cigarette smoke). Diverse animals, from insects to humans, find reactive electrophiles aversive, but whether this reflects conservation of an ancient sensory modality has been unclear. Here we identify the molecular basis of reactive electrophile detection in flies. We demonstrate that Drosophila TRPA1 (Transient receptor potential A1), the Drosophila melanogaster orthologue of the human irritant sensor, acts in gustatory chemosensors to inhibit reactive electrophile ingestion. We show that fly and mosquito TRPA1 orthologues are molecular sensors of electrophiles, using a mechanism conserved with vertebrate TRPA1s. Phylogenetic analyses indicate that invertebrate and vertebrate TRPA1s share a common ancestor that possessed critical characteristics required for electrophile detection. These findings support emergence of TRPA1-based electrophile detection in a common bilaterian ancestor, with widespread conservation throughout vertebrate and invertebrate evolution. Such conservation contrasts with the evolutionary divergence of canonical olfactory and gustatory receptors and may relate to electrophile toxicity. We propose that human pain perception relies on an ancient chemical sensor conserved across approximately 500 million years of animal evolution.


Expression, purification, and spectral tuning of RhoGC, a retinylidene/guanylyl cyclase fusion protein and optogenetics tool from the aquatic fungus Blastocladiella emersonii.

  • Melissa M Trieu‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

RhoGC is a rhodopsin (Rho)-guanylyl cyclase (GC) gene fusion molecule that is central to zoospore phototaxis in the aquatic fungus Blastocladiella emersonii It has generated considerable excitement because of its demonstrated potential as a tool for optogenetic manipulation of cell-signaling pathways involving cyclic nucleotides. However, a reliable method for expressing and purifying RhoGC is currently lacking. We present here an expression and purification system for isolation of the full-length RhoGC protein expressed in HEK293 cells in detergent solution. The protein exhibits robust light-dependent guanylyl cyclase activity, whereas a truncated form lacking the 17- to 20-kDa N-terminal domain is completely inactive under identical conditions. Moreover, we designed several RhoGC mutants to increase the utility of the protein for optogenetic studies. The first class we generated has altered absorption spectra designed for selective activation by different wavelengths of light. Two mutants were created with blue-shifted (E254D, λmax = 390 nm; D380N, λmax = 506 nm) and one with red-shifted (D380E, λmax = 533 nm) absorption maxima relative to the wild-type protein (λmax = 527 nm). We also engineered a double mutant, E497K/C566D, that changes the enzyme to a specific, light-stimulated adenylyl cyclase that catalyzes the formation of cAMP from ATP. We anticipate that this expression/purification system and these RhoGC mutants will facilitate mechanistic and structural exploration of this important enzyme.


Identification of the initial nucleocapsid recognition element in the HIV-1 RNA packaging signal.

  • Pengfei Ding‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Selective packaging of the HIV-1 genome during virus assembly is mediated by interactions between the dimeric 5'-leader of the unspliced viral RNA and the nucleocapsid (NC) domains of a small number of assembling viral Gag polyproteins. Here, we show that the dimeric 5'-leader contains more than two dozen NC binding sites with affinities ranging from 40 nM to 1.4 μM, and that all high-affinity sites (Kd ≲ 400 nM) reside within a ∼150-nt region of the leader sufficient to promote RNA packaging (core encapsidation signal, ΨCES). The four initial binding sites with highest affinity reside near two symmetrically equivalent three-way junction structures. Unlike the other high-affinity sites, which bind NC with exothermic energetics, binding to these sites occurs endothermically due to concomitant unwinding of a weakly base-paired [UUUU]:[GGAG] helical element. Mutations that stabilize base pairing within this element eliminate NC binding to this site and severely impair RNA packaging into virus-like particles. NMR studies reveal that a recently discovered small-molecule inhibitor of HIV-1 RNA packaging that appears to function by stabilizing the structure of the leader binds directly to the [UUUU]:[GGAG] helix. Our findings suggest a sequential NC binding mechanism for Gag-genome assembly and identify a potential RNA Achilles' heel to which HIV therapeutics may be targeted.


Transcription start site heterogeneity and its role in RNA fate determination distinguish HIV-1 from other retroviruses and are mediated by core promoter elements.

  • Siarhei Kharytonchyk‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

HIV-1 uses heterogeneous transcription start sites (TSSs) to generate two RNA 5' isoforms that adopt radically different structures and perform distinct replication functions. Although these RNAs differ in length by only two bases, exclusively the shorter RNA is encapsidated while the longer RNA is excluded from virions and provides intracellular functions. The current study examined TSS usage and packaging selectivity for a broad range of retroviruses and found that heterogenous TSS usage was a conserved feature of all tested HIV-1 strains, but all other retroviruses examined displayed unique TSSs. Phylogenetic csomparisons and chimeric viruses' properties provided evidence that this mechanism of RNA fate determination was an innovation of the HIV-1 lineage, with determinants mapping to core promoter elements. Fine-tuning differences between HIV-1 and HIV-2, which uses a unique TSS, implicated purine residue positioning plus a specific TSS-adjacent dinucleotide in specifying multiplicity of TSS usage. Based on these findings, HIV-1 expression constructs were generated that differed from the parental strain by only two point mutations yet each expressed only one of HIV-1's two RNAs. Replication defects of the variant with only the presumptive founder TSS were less severe than those for the virus with only the secondary start site.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: