Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

A previously unrecognized role of C3a in proteinuric progressive nephropathy.

  • Marina Morigi‎ et al.
  • Scientific reports‎
  • 2016‎

Podocyte loss is the initial event in the development of glomerulosclerosis, the structural hallmark of progressive proteinuric nephropathies. Understanding mechanisms underlying glomerular injury is the key challenge for identifying novel therapeutic targets. In mice with protein-overload induced by bovine serum albumin (BSA), we evaluated whether the alternative pathway (AP) of complement mediated podocyte depletion and podocyte-dependent parietal epithelial cell (PEC) activation causing glomerulosclerosis. Factor H (Cfh(-/-)) or factor B-deficient mice were studied in comparison with wild-type (WT) littermates. WT+BSA mice showed podocyte depletion accompanied by glomerular complement C3 and C3a deposits, PEC migration to capillary tuft, proliferation, and glomerulosclerosis. These changes were more prominent in Cfh(-/-) +BSA mice. The pathogenic role of AP was documented by data that factor B deficiency preserved glomerular integrity. In protein-overload mice, PEC dysregulation was associated with upregulation of CXCR4 and GDNF/c-Ret axis. In vitro studies provided additional evidence of a direct action of C3a on proliferation and CXCR4-related migration of PECs. These effects were enhanced by podocyte-derived GDNF. In patients with proteinuric nephropathy, glomerular C3/C3a paralleled PEC activation, CXCR4 and GDNF upregulation. These results indicate that mechanistically uncontrolled AP complement activation is not dispensable for podocyte-dependent PEC activation resulting in glomerulosclerosis.


Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental diabetes.

  • Monica Locatelli‎ et al.
  • Scientific reports‎
  • 2020‎

More effective treatments for diabetic nephropathy remain a major unmet clinical need. Increased oxidative stress is one of the most important pathological mechanisms that lead to kidney damage and functional impairment induced by diabetes. Sirtuin 3 (SIRT3) is the main mitochondrial deacetylase and critically regulates cellular reactive oxygen species (ROS) production and detoxification. Honokiol is a natural biphenolic compound that, by activating mitochondrial SIRT3, can carry out anti-oxidant, anti-inflammatory and anti-fibrotic activities. Here, we sought to investigate the renoprotective effects of honokiol in BTBR ob/ob mice with type 2 diabetes. Diabetic mice were treated with vehicle or honokiol between the ages of 8 and 14 weeks. Wild-type mice served as controls. Renal Sirt3 expression was significantly reduced in BTBR ob/ob mice, and this was associated with a reduction in its activity and increased ROS levels. Selective activation of SIRT3 through honokiol administration translated into the attenuation of albuminuria, amelioration of glomerular damage, and a reduction in podocyte injury. SIRT3 activation preserved mitochondrial wellness through the activation of SOD2 and the restoration of PGC-1α expression in glomerular cells. Additionally, the protective role of SIRT3 in glomerular changes was associated with enhanced tubular Sirt3 expression and upregulated renal Nampt levels, indicating a possible tubule-glomerulus retrograde interplay, which resulted in improved glomerular SIRT3 activity. Our results demonstrate the hitherto unknown renoprotective effect of SIRT3 against diabetic glomerular disease and suggest that the pharmacological modulation of SIRT3 activity is a possible novel approach to treating diabetic nephropathy.


SARS-CoV-2 spike protein induces lung endothelial cell dysfunction and thrombo-inflammation depending on the C3a/C3a receptor signalling.

  • Luca Perico‎ et al.
  • Scientific reports‎
  • 2023‎

The spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can interact with endothelial cells. However, no studies demonstrated the direct effect of the spike protein subunit 1 (S1) in inducing lung vascular damage and the potential mechanisms contributing to lung injury. Here, we found that S1 injection in mice transgenic for human angiotensin converting enzyme 2 (ACE2) induced early loss of lung endothelial thromboresistance at 3 days, as revealed by thrombomodulin loss and von Willebrand factor (vWF) increase. In parallel, vascular and epithelial C3 deposits and enhanced C3a receptor (C3aR) expression were observed. These changes preceded diffuse alveolar damage and lung vascular fibrin(ogen)/platelets aggregates at 7 days, as well as inflammatory cell recruitment and fibrosis. Treatment with C3aR antagonist (C3aRa) inhibited lung C3 accumulation and C3a/C3aR activation, limiting vascular thrombo-inflammation and fibrosis. Our study demonstrates that S1 triggers vascular dysfunction and activates complement system, instrumental to lung thrombo-inflammatory injury. By extension, our data indicate C3aRa as a valuable therapeutic strategy to limit S1-dependent lung pathology.


Spray-Dried Powder Containing Cannabigerol: A New Extemporaneous Emulgel for Topical Administration.

  • Alice Picco‎ et al.
  • Pharmaceutics‎
  • 2023‎

Cannabigerol (CBG), a cannabinoid from Cannabis sativa L., recently attracted noteworthy attention for its dermatological applications, mainly due to its anti-inflammatory, antioxidant, and antimicrobial effectiveness similar to those of cannabidiol (CBD). In this work, based on results from studies of in vitro permeation through biomimetic membranes performed with CBG and CBD in the presence and in the absence of a randomly substituted methyl-β-cyclodextrin (MβCD), a new CBG extemporaneous emulgel (oil-in-gel emulsion) formulation was developed by spray-drying. The powder (SDE) can be easily reconstituted with purified water, leading to a product with chemical-physical and technological characteristics that are comparable to those of the starting emulgels (E). Thermogravimetric analysis (TGA), attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR), x-ray powder diffraction (XRPD), and high-performance liquid chromatography (HPLC) analyses demonstrated that the spray-drying treatment did not alter the chemical properties of CBG. This product can represent a metered-dosage form for the localized treatment of cutaneous afflictions such as acne and psoriasis.


Lipoprotein X Causes Renal Disease in LCAT Deficiency.

  • Alice Ossoli‎ et al.
  • PloS one‎
  • 2016‎

Human familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is characterized by low HDL, accumulation of an abnormal cholesterol-rich multilamellar particle called lipoprotein-X (LpX) in plasma, and renal disease. The aim of our study was to determine if LpX is nephrotoxic and to gain insight into the pathogenesis of FLD renal disease. We administered a synthetic LpX, nearly identical to endogenous LpX in its physical, chemical and biologic characteristics, to wild-type and Lcat-/- mice. Our in vitro and in vivo studies demonstrated an apoA-I and LCAT-dependent pathway for LpX conversion to HDL-like particles, which likely mediates normal plasma clearance of LpX. Plasma clearance of exogenous LpX was markedly delayed in Lcat-/- mice, which have low HDL, but only minimal amounts of endogenous LpX and do not spontaneously develop renal disease. Chronically administered exogenous LpX deposited in all renal glomerular cellular and matrical compartments of Lcat-/- mice, and induced proteinuria and nephrotoxic gene changes, as well as all of the hallmarks of FLD renal disease as assessed by histological, TEM, and SEM analyses. Extensive in vivo EM studies revealed LpX uptake by macropinocytosis into mouse glomerular endothelial cells, podocytes, and mesangial cells and delivery to lysosomes where it was degraded. Endocytosed LpX appeared to be degraded by both human podocyte and mesangial cell lysosomal PLA2 and induced podocyte secretion of pro-inflammatory IL-6 in vitro and renal Cxl10 expression in Lcat-/- mice. In conclusion, LpX is a nephrotoxic particle that in the absence of Lcat induces all of the histological and functional hallmarks of FLD and hence may serve as a biomarker for monitoring recombinant LCAT therapy. In addition, our studies suggest that LpX-induced loss of endothelial barrier function and release of cytokines by renal glomerular cells likely plays a role in the initiation and progression of FLD nephrosis.


Protective Effects of Human Nonrenal and Renal Stromal Cells and Their Conditioned Media in a Rat Model of Chronic Kidney Disease.

  • Barbara Imberti‎ et al.
  • Cell transplantation‎
  • 2020‎

Mesenchymal stromal cells (MSCs) are emerging as a novel therapeutic option for limiting chronic kidney disease progression. Conditioned medium (CM) containing bioactive compounds could convey similar benefits, avoiding the potential risks of cell therapy. This study compared the efficacy of nonrenal and renal cell-based therapy with the corresponding CM in rats with renal mass reduction (RMR). Infusions of human kidney stromal cells (kPSCs) and CM-kPSCs, but not umbilical cord (uc) MSCs or CM-ucMSCs, reduced proteinuria and preserved podocyte number and nephrin expression in RMR rats. Glomerular fibrosis, microvascular rarefaction, and apoptosis were reduced by all treatments, while the peritubular microvascular loss was reduced by kPSCs and CM-kPSCs treatment only. Importantly, kPSCs and CM-kPSCs reduced NG2-positive pericytes, and all therapies reduced α-smooth muscle actin expression, indicating reduced myofibroblast expansion. Treatment with kPSCs also significantly inhibited the accumulation of ED1-positive macrophages in the renal interstitium of RMR rats. These findings demonstrate that the CM of ucMSCs and kPSCs confers similar renoprotection as the cells. kPSCs and CM-kPSCs may be superior in attenuating chronic renal injury as a cell source.


Cooking of Artemide Black Rice: Impact on Proximate Composition and Phenolic Compounds.

  • Antonio Colasanto‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2021‎

The consumption of black rice has grown in recent years due to its particular organoleptic properties and high content of antioxidant polyphenols, which make it a sort of natural functional food. However, heat treatment applied during cooking can influence the content and the composition of antioxidant components, particularly anthocyanins, the main compounds of black rice, responsible for its color. The aim of this work was to evaluate the impact of different cooking techniques (boiling, microwaves oven, under pressure pot and risotto preparation) on the chemical and nutritional composition of the Italian Artemide black rice. Different cooking methods had significant and different impact on rice composition. Proximate composition was not affected by cooking, except for moisture, which increased, and fiber content, which decreased. Total polyphenols, total anthocyanin content, and antioxidant capacity were reduced; moreover, anthocyanins and phenolic acids determined by HPLC-DAD generally decreased, with the only exception of protocatechuic acid. The risotto preparation was the most useful cooking technique to preserve anthocyanins and antioxidant activity. Our results demonstrated the importance to study cooking methods and to evaluate their impact on rice characteristics, in order to preserve its nutritional and beneficial properties.


Thyroid hormone treatment counteracts cellular phenotypical remodeling in diabetic organs.

  • Angelo M Lavecchia‎ et al.
  • iScience‎
  • 2023‎

Diabetes mellitus and alterations in thyroid hormone (TH) signaling are closely linked. Though the role of TH signaling in cell differentiation and growth is well known, it remains unclear whether its alterations contribute to the pathobiology of diabetic cells. Here, we aim to investigate whether the administration of exogenous T3 can counteract the cellular remodeling that occurs in diabetic cardiomyocytes, podocytes, and pancreatic beta cells. Treating diabetic rats with T3 prevents dedifferentiation, pathological growth, and ultrastructural alterations in podocytes and cardiomyocytes. In vitro, T3 reverses glucose-induced growth in human podocytes and cardiomyocytes, restores cardiomyocyte cytoarchitecture, and reverses pathological alterations in kidney and cardiac organoids. Finally, T3 treatment counteracts glucose-induced transdifferentiation, cell growth, and loss in pancreatic beta cells through TH receptor alpha1 activation. Our studies indicate that TH signaling activation substantially counteracts diabetes-induced pathological remodeling, and provide a potential therapeutic approach for the treatment of diabetes and its complications.


MicroRNA-184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy.

  • Cristina Zanchi‎ et al.
  • Diabetologia‎
  • 2017‎

Renal fibrosis is a common complication of diabetic nephropathy and is a major cause of end-stage renal disease. Despite the suggested link between renal fibrosis and microRNA (miRNA) dysregulation in diabetic nephropathy, the identification of the specific miRNAs involved is still incomplete. The aim of this study was to investigate miRNA profiles in the diabetic kidney and to identify potential downstream targets implicated in renal fibrosis.


Comparison between Communicated and Calculated Exposure Estimates Obtained through Three Modeling Tools.

  • Andrea Spinazzè‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

This study aims to evaluate the risk assessment approach of the REACH legislation in industrial chemical departments with a focus on the use of three models to calculate exposures, and discuss those factors that can determine a bias between the estimated exposure (and therefore the expected risk) in the extended safety data sheets (e-SDS) and the expected exposure for the actual scenario. To purse this goal, the exposure estimates and risk characterization ratios (RCRs) of registered exposure scenarios (ES; "communicated exposure" and "communicated RCR") were compared with the exposure estimates and the corresponding RCRs calculated for the actual, observed ES, using recommended tools for the evaluation of exposure assessment and in particular the following tools: (i) the European Centre for Ecotoxicology and Toxicology of Chemicals Targeted Risk Assessment v.3.1 (ECETOC TRA), (ii) STOFFENMANAGER® v.8.0 and (iii) the Advanced REACH Tool (ART). We evaluated 49 scenarios in three companies handling chemicals. Risk characterization ratios (RCRs) were calculated by dividing estimated exposures by derived no-effect levels (DNELs). Although the calculated exposure and RCRs generally were lower than communicated, the correlation between communicated and calculated exposures and RCRs was generally poor, indicating that the generic registered scenarios do not reflect actual working, exposure and risk conditions. Further, some observed scenarios resulted in calculated exposure values and RCR higher than those communicated through chemicals' e-SDSs; thus 'false safe' scenarios (calculated RCRs > 1) were also observed. Overall, the obtained evidences contribute to doubt about whether the risk assessment should be performed using generic (communicated by suppliers) ES with insufficient detail of the specific scenario at all companies. Contrariwise, evidences suggested that it would be safer for downstream users to perform scenario-specific evaluations, by means of proper scaling approach, to achieve more representative estimates of chemical risk.


Sirtuin 3 Deficiency Aggravates Kidney Disease in Response to High-Fat Diet through Lipotoxicity-Induced Mitochondrial Damage.

  • Monica Locatelli‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Sirtuin 3 (SIRT3) is the primary mitochondrial deacetylase that controls the antioxidant pathway and energy metabolism. We previously found that renal Sirt3 expression and activity were reduced in mice with type 2 diabetic nephropathy associated with oxidative stress and mitochondrial abnormalities and that a specific SIRT3 activator improved renal damage. SIRT3 is modulated by diet, and to assess whether Sirt3 deficiency aggravates mitochondrial damage and accelerates kidney disease in response to nutrient overloads, wild-type (WT) and Sirt3-/- mice were fed a high-fat-diet (HFD) or standard diet for 8 months. Sirt3-/- mice on HFD exhibited earlier and more severe albuminuria compared to WT mice, accompanied by podocyte dysfunction and glomerular capillary rarefaction. Mesangial matrix expansion, tubular vacuolization and inflammation, associated with enhanced lipid accumulation, were more evident in Sirt3-/- mice. After HFD, kidneys from Sirt3-/- mice showed more oxidative stress than WT mice, mitochondria ultrastructural damage in tubular cells, and a reduction in mitochondrial mass and energy production. Our data demonstrate that Sirt3 deficiency renders mice more prone to developing oxidative stress and mitochondrial abnormalities in response to HFD, resulting in more severe kidney diseases, and this suggests that mitochondria protection may be a method to prevent HFD-induced renal injury.


Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome.

  • Simona Buelli‎ et al.
  • Cells‎
  • 2022‎

Shiga toxin (Stx)-producing Escherichia coli is the predominant offending agent of post-diarrheal hemolytic uremic syndrome (HUS), a rare disorder of microvascular thrombosis and acute kidney injury possibly leading to long-term renal sequelae. We previously showed that C3a has a critical role in the development of glomerular damage in experimental HUS. Based on the evidence that activation of C3a/C3a receptor (C3aR) signaling induces mitochondrial dysregulation and cell injury, here we investigated whether C3a caused podocyte and tubular injury through induction of mitochondrial dysfunction in a mouse model of HUS. Mice coinjected with Stx2/LPS exhibited glomerular podocyte and tubular C3 deposits and C3aR overexpression associated with cell damage, which were limited by C3aR antagonist treatment. C3a promoted renal injury by affecting mitochondrial wellness as demonstrated by data showing that C3aR blockade reduced mitochondrial ultrastructural abnormalities and preserved mitochondrial mass and energy production. In cultured podocytes and tubular cells, C3a caused altered mitochondrial fragmentation and distribution, and reduced anti-oxidant SOD2 activity. Stx2 potentiated the responsiveness of renal cells to the detrimental effects of C3a through increased C3aR protein expression. These results indicate that C3aR may represent a novel target in Stx-associated HUS for the preservation of renal cell integrity through the maintenance of mitochondrial function.


Low Nephron Number Induced by Maternal Protein Restriction Is Prevented by Nicotinamide Riboside Supplementation Depending on Sirtuin 3 Activation.

  • Anna Pezzotta‎ et al.
  • Cells‎
  • 2022‎

A reduced nephron number at birth, due to critical gestational conditions, including maternal malnutrition, is associated with the risk of developing hypertension and chronic kidney disease in adulthood. No interventions are currently available to augment nephron number. We have recently shown that sirtuin 3 (SIRT3) has an important role in dictating proper nephron endowment. The present study explored whether SIRT3 stimulation, by means of supplementation with nicotinamide riboside (NR), a precursor of the SIRT3 co-substrate nicotinamide adenine dinucleotide (NAD+), was able to improve nephron number in a murine model of a low protein (LP) diet. Our findings show that reduced nephron number in newborn mice (day 1) born to mothers fed a LP diet was associated with impaired renal SIRT3 expression, which was restored through supplementation with NR. Glomerular podocyte density, as well as the rarefaction of renal capillaries, also improved through NR administration. In mechanistic terms, the restoration of SIRT3 expression through NR was mediated by the induction of proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α). Moreover, NR restored SIRT3 activity, as shown by the reduction of the acetylation of optic atrophy 1 (OPA1) and superoxide dismutase 2 (SOD2), which resulted in improved mitochondrial morphology and protection against oxidative damage in mice born to mothers fed the LP diet. Our results provide evidence that it is feasible to prevent nephron mass shortage at birth through SIRT3 boosting during nephrogenesis, thus providing a therapeutic option to possibly limit the long-term sequelae of reduced nephron number in adulthood.


CER-001 ameliorates lipid profile and kidney disease in a mouse model of familial LCAT deficiency.

  • Alice Ossoli‎ et al.
  • Metabolism: clinical and experimental‎
  • 2021‎

CER-001 is an HDL mimetic that has been tested in different pathological conditions, but never with LCAT deficiency. This study was designed to investigate whether the absence of LCAT affects the catabolic fate of CER-001, and to evaluate the effects of CER-001 on kidney disease associated with LCAT deficiency.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: