Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

MALDI Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries.

  • Svetlana Uzbekova‎ et al.
  • Biology‎
  • 2015‎

In mammals, oocytes develop inside the ovarian follicles; this process is strongly supported by the surrounding follicular environment consisting of cumulus, granulosa and theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large amounts of energy that is produced by follicular cells from substrates including glucose, amino acids and fatty acids (FAs). Since lipid metabolism plays an important role in acquiring oocyte developmental competence, the aim of this study was to investigate site-specificity of lipid metabolism in ovaries by comparing lipid profiles and expression of FA metabolism-related genes in different ovarian compartments. Using MALDI Mass Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion signals for the first time. Cluster analysis of ion spectra revealed differences in spatial distribution of lipid species among ovarian compartments, notably between the follicles and interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca and the oocyte-cumulus complex. Moreover, by transcript quantification using real time PCR, we showed that expression of five key genes in FA metabolism significantly varied between somatic follicular cells (theca, granulosa and cumulus) and the oocyte. In conclusion, lipid metabolism differs between ovarian and follicular compartments.


Tribbles expression in cumulus cells is related to oocyte maturation and fatty acid metabolism.

  • Daphné Brisard‎ et al.
  • Journal of ovarian research‎
  • 2014‎

In mammals, the Tribbles family includes widely expressed serine-threonine kinase-like proteins (TRIB1, TRIB2 and TRIB3) that are involved in multiple biological processes including cell proliferation and fatty acid (FA) metabolism. Our recent studies highlighted the importance of FA metabolism in cumulus cells (CC) during oocyte maturation in vertebrates and reported a higher TRIB1 expression in CC surrounding in vivo mature oocytes as compared to immature ooocytes in mice and cows. The objective was to investigate Tribbles expression patterns in bovine CC during in vitro maturation (IVM) and to examine their roles in the cumulus-oocyte complex.


Beta-nerve growth factor stimulates spontaneous electrical activity of in vitro embryonic mouse GnRH neurons through a P75 mediated-mechanism.

  • Caroline Pinet-Charvet‎ et al.
  • Scientific reports‎
  • 2020‎

The control of ovulation helps guarantee the success of reproduction and as such, contributes to the fitness of a species. In mammals, two types of ovulation are observed: induced and spontaneous ovulation. Recent work on camelids, that are induced ovulators, highlighted the role of a factor present in seminal plasma, beta Nerve Growth Factor (β-NGF), as the factor that triggers ovulation in a GnRH dependent manner. In the present work, we characterized alpaca β-NGF (aβ-NGF) and its 3D structure and compared it with human recombinant β-NGF (hβ-NGF). We showed that the β-NGF enriched fraction of alpaca semen and the human recombinant protein, both stimulated spontaneous electrical activity of primary GnRH neurons derived from mouse embryonic olfactory placodes. This effect was dose-dependent and mediated by p75 receptor signaling. P75 receptors were found expressed in vitro by olfactory ensheathing cells (OEC) in close association with GnRH neurons and in vivo by tanycytes in close vicinity to GnRH fibers in adult mouse. Altogether, these results suggested that β-NGF induced ovulation through an increase in GnRH secretion provoked by a glial dependent P75 mediated mechanism.


Identification of 56 Proteins Involved in Embryo-Maternal Interactions in the Bovine Oviduct.

  • Charles Banliat‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The bovine embryo develops in contact with the oviductal fluid (OF) during the first 4-5 days of pregnancy. The aim of this study was to decipher the protein interactions occurring between the developing embryo and surrounding OF. In-vitro produced 4-6 cell and morula embryos were incubated or not (controls) in post-ovulatory OF (OF-treated embryos) and proteins were then analyzed and quantified by high resolution mass spectrometry (MS) in both embryo groups and in OF. A comparative analysis of MS data allowed the identification and quantification of 56 embryo-interacting proteins originated from the OF, including oviductin (OVGP1) and several annexins (ANXA1, ANXA2, ANXA4) as the most abundant ones. Some embryo-interacting proteins were developmental stage-specific, showing a modulating role of the embryo in protein interactions. Three interacting proteins (OVGP1, ANXA1 and PYGL) were immunolocalized in the perivitelline space and in blastomeres, showing that OF proteins were able to cross the zona pellucida and be taken up by the embryo. Interacting proteins were involved in a wide range of functions, among which metabolism and cellular processes were predominant. This study identified for the first time a high number of oviductal embryo-interacting proteins, paving the way for further targeted studies of proteins potentially involved in the establishment of pregnancy in cattle.


Progesterone induces sperm release from oviductal epithelial cells by modifying sperm proteomics, lipidomics and membrane fluidity.

  • Marina Ramal-Sanchez‎ et al.
  • Molecular and cellular endocrinology‎
  • 2020‎

The sperm reservoir is formed after insemination in mammals, allowing sperm storage in the oviduct until their release. We previously showed that physiological concentrations of progesterone (P4) trigger in vitro the sperm release from bovine oviductal epithelial cells (BOECs), selecting a subpopulation of spermatozoa with a higher fertilizing competence. Here, by using Western-Blot, confocal microscopy and Intact Cell MALDI-TOF-Mass Spectrometry strategies, we elucidated the changes derived by the P4-induced release on sperm cells (BOEC-P4 spz). Our findings show that, compared to controls, BOEC-P4 spz presented a decrease in the abundance of Binder of Sperm Proteins (BSP) -3 and -5, suggesting one mechanism by which spermatozoa may detach from BOECs, and thus triggering the membrane remodeling with an increase of the sperm membrane fluidity. Furthermore, an interesting number of membrane lipids and proteins were differentially abundant in BOEC-P4 spz compared with controls.


Protein Palmitoylation in Bovine Ovarian Follicle.

  • Svetlana Uzbekova‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Protein palmitoylation is a reversible post-translational modification by fatty acids (FA), mainly a palmitate (C16:0). Palmitoylation allows protein shuttling between the plasma membrane and cytosol to regulate protein stability, sorting and signaling activity and its deficiency leads to diseases. We aimed to characterize the palmitoyl-proteome of ovarian follicular cells and molecular machinery regulating protein palmitoylation within the follicle. For the first time, 84 palmitoylated proteins were identified from bovine granulosa cells (GC), cumulus cells (CC) and oocytes by acyl-biotin exchange proteomics. Of these, 32 were transmembrane proteins and 27 proteins were detected in bovine follicular fluid extracellular vesicles (ffEVs). Expression of palmitoylation and depalmitoylation enzymes as palmitoyltransferases (ZDHHCs), acylthioesterases (LYPLA1 and LYPLA2) and palmitoylthioesterases (PPT1 and PPT2) were analysed using transcriptome and proteome data in oocytes, CC and GC. By immunofluorescence, ZDHHC16, PPT1, PPT2 and LYPLA2 proteins were localized in GC, CC and oocyte. In oocyte and CC, abundance of palmitoylation-related enzymes significantly varied during oocyte maturation. These variations and the involvement of identified palmitoyl-proteins in oxidation-reduction processes, energy metabolism, protein localization, vesicle-mediated transport, response to stress, G-protein mediated and other signaling pathways suggests that protein palmitoylation may play important roles in oocyte maturation and ffEV-mediated communications within the follicle.


MALDI-TOF Mass Spectrometry Revealed Significant Lipid Variations in Follicular Fluid and Somatic Follicular Cells but Not in Enclosed Oocytes between the Large Dominant and Small Subordinate Follicles in Bovine Ovary.

  • Priscila Silvana Bertevello‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Lipid metabolism in ovarian follicular cells supports the preparation of an enclosed oocyte to ovulation. We aimed to compare lipid composition of a dominant large follicle (LF) and subordinated small follicles (SFs) within the same ovaries. Mass spectrometry imaging displayed the differences in the distribution of several lipid features between the different follicles. Comparison of lipid fingerprints between LF and SF by Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight (MALDI-TOF) mass spectrometry revealed that in the oocytes, only 8 out of 468 detected lipids (1.7%) significantly changed their abundance (p < 0.05, fold change > 2). In contrast, follicular fluid (FF), granulosa, theca and cumulus cells demonstrated 55.5%, 14.9%, 5.3% and 9.8% of significantly varied features between LF and SF, respectively. In total, 25.2% of differential lipids were identified and indicated potential changes in membrane and signaling lipids. Tremendous changes in FF lipid composition were likely due to the stage specific secretions from somatic follicular cells that was in line with the differences observed from FF extracellular vesicles and gene expression of candidate genes in granulosa and theca cells between LF and SF. In addition, lipid storage in granulosa and theca cells varied in relation to follicular size and atresia. Differences in follicular cells lipid profiles between LF and SF may probably reflect follicle atresia degree and/or accumulation of appropriate lipids for post-ovulation processes as formation of corpus luteum. In contrast, the enclosed oocyte seems to be protected during final follicular growth, likely due in part to significant lipid transformations in surrounding cumulus cells. Therefore, the enclosed oocyte could likely keep lipid building blocks and energy resources to support further maturation and early embryo development.


The sperm-interacting proteome in the bovine isthmus and ampulla during the periovulatory period.

  • Coline Mahé‎ et al.
  • Journal of animal science and biotechnology‎
  • 2023‎

Spermatozoa interact with oviduct secretions before fertilization in vivo but the molecular players of this dialog and underlying dynamics remain largely unknown. Our objectives were to identify an exhaustive list of sperm-interacting proteins (SIPs) in the bovine oviduct fluid and to evaluate the impact of the oviduct anatomical region (isthmus vs. ampulla) and time relative to ovulation (pre-ovulatory vs. post-ovulatory) on SIPs number and abundance.


Bisphenol S Impaired Human Granulosa Cell Steroidogenesis in Vitro.

  • Sarah Amar‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Bisphenol S (BPS) is a structural analog of the endocrine disruptor bisphenol A (BPA); it is the main BPA replacement in the plastics industry. Previous studies have shown that BPA and BPS exhibit similar effects on reproduction in fish and rodent species. BPS reportedly alters steroidogenesis in bovine granulosa cells. Luteinised granulosa cells collected from 59 women who were undergoing an in vitro fertilization procedure were cultured for 48 h in the presence or absence of BPS (10 nM, 100 nM, 1 µM, 10 µM or 50 µM). BPS exposure was investigated by assessing follicular fluids from these 59 women for their BPS content. Culture medium, cells, total messenger RNA (mRNA) and total protein extracted from the luteinised granulosa cells were examined for oestradiol and progesterone secretion, cellular proliferation, viability, gene expression, steroidogenic enzyme expression and cell signaling. BPS was measured in follicular fluids using mass spectrometry. Exposure of granulosa cells to 10 or 50 µM BPS for 48 h induced a 16% (p = 0.0059) and 64% (p < 0.0001) decrease, respectively, in progesterone secretion; 50 µM BPS decreased oestradiol secretion by 46% (p < 0.0001). Ten µM BPS also tended to reduce CYP11A1 protein expression by 37% (p = 0.0947) without affecting HSD3B1 and CYP19A1 expression. Fifty µM BPS increased ERRγ expression. Environmental levels of BPS (nanomolar range) did not induce changes in steroidogenesis in human granulosa cells. The effects of BPS were observed after only 48 h of BPS exposure. These acute effects might be similar to chronic effects of physiological BPS levels.


Effect of DHA on the quality of In vitro produced bovine embryos.

  • Sarah Janati Idrissi‎ et al.
  • Theriogenology‎
  • 2022‎

Docosahexaenoic acid (DHA) is an n-3 polyunsaturated fatty acid (PUFA) that improves fertility by increasing membrane fluidity. Moreover, embryos produced by donor females supplied with n-3 PUFA did not show any difference in terms of the lipid profile after 7 days of culture. The present study aimed to investigate the effects of DHA (20 and 100 μM) coupled with carnosine (5 mg/mL), an antioxidant, during oocyte maturation and embryo development on the developmental and cryosurvival rates and the number of pluripotent cells. Free fatty acid receptor-4 (FFAR4), which is able to bind DHA, was visualised by immunostaining. The addition of DHA in the in vitro development (IVD) medium decreased the percentage of pluripotent SOX2 positive cells compared with the control (8.4% vs. 10.9%) without affecting the number of cells (196.7 vs. 191.6 cells) or the developmental (20.9% vs. 23.9% blastocysts rate on D7) and cryosurvival rates (86.3% vs 86.2%). Such a decrease in pluripotent cells, relevant to the differentiation of the first lineage within the inner cell mass, represents an improvement in the embryo quality. On the contrary, embryos without any pluripotent SOX2-positive cells would not be able to achieve gestation. Future studies should follow up these results by carrying out embryo transfers to assess the beneficial effects of DHA supplementation.


Extracellular Vesicles Contribute to the Difference in Lipid Composition between Ovarian Follicles of Different Size Revealed by Mass Spectrometry Imaging.

  • Emilie Maugrion‎ et al.
  • Metabolites‎
  • 2023‎

Follicular fluid (FF) ensures a safe environment for oocyte growth and maturation inside the ovarian follicle in mammals. In each cycle, the large dominant follicle (LF) contains the oocyte designated to be ovulated, whereas the small subordinate follicles (SFs) of the same wave will die through atresia. In cows, the oocytes from the SF, being 2 mm in size, are suitable for in vitro reproduction biotechnologies, and their competence in developing an embryo depends on the size of the follicles. FF contains proteins, metabolites, fatty acids, and a multitude of extracellular vesicles (ffEVs) of different origins, which may influence oocyte competence through bidirectional exchanges of specific molecular cargo between follicular cells and enclosed oocytes. FF composition evolves along with follicle growth, and the abundance of different lipids varies between the LF and SF. Here, significant differences in FF lipid content between the LFs and SFs within the same ovary were demonstrated by MALD-TOF mass spectrometry imaging on bovine ovarian sections. We then aimed to enlighten the lipid composition of FF, and MALDI-TOF lipid profiling was performed on cellular, vesicular, and liquid fractions of FF. Differential analyses on the abundance of detected lipid features revealed specific enrichment of phospholipids in different ffEV types, such as microvesicles (MVs) and exosomes (Exo), compared to depleted FF. MALDI-TOF lipid profiling on MVs and Exo from the LF and SF samples (n = 24) revealed that more than 40% of detected features were differentially abundant between the groups of MVs and Exo from the different follicles (p < 0.01, fold change > 2). Glycerophospholipid and sphingolipid features were more abundant in ffEVs from the SFs, whereas different lysophospholipids, including phosphatidylinositols, were more abundant in the LFs. As determined by functional analysis, the specific lipid composition of ffEVs suggested the involvement of vesicular lipids in cell signaling pathways and largely contributed to the differentiation of the dominant and subordinate follicles.


Spatiotemporal profiling of the bovine oviduct fluid proteome around the time of ovulation.

  • Coline Mahé‎ et al.
  • Scientific reports‎
  • 2022‎

Understanding the composition of the oviduct fluid (OF) is crucial to better comprehend the microenvironment in which sperm capacitation, fertilization and early embryo development take place. Therefore, our aim was to determine the spatiotemporal changes in the OF proteome according to the anatomical region of the oviduct (ampulla vs. isthmus), the proximity of the ovulating ovary (ipsilateral vs. contralateral side) and the peri-ovulatory stage (pre-ovulatory or Pre-ov vs. post-ovulatory or Post-ov). Oviducts from adult cyclic cows were collected at a local slaughterhouse and pools of OF were analyzed by nanoLC-MS/MS and label-free protein quantification (n = 32 OF pools for all region × stage × side conditions). A total of 3760 proteins were identified in the OF, of which 65% were predicted to be potentially secreted. The oviduct region was the major source of variation in protein abundance, followed by the proximity of the ovulating ovary and finally the peri-ovulatory stage. Differentially abundant proteins between regions, stages and sides were involved in a broad variety of biological functions, including protein binding, response to stress, cell-to-cell adhesion, calcium homeostasis and the immune system. This work highlights the dynamic regulation of oviduct secretions and provides new protein candidates for interactions between the maternal environment, the gametes and the early embryo.


Metabolomic Profile of Oviductal Extracellular Vesicles across the Estrous Cycle in Cattle.

  • Julie Gatien‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Oviductal extracellular vesicles (oEVs) have been proposed as key modulators of gamete/embryo maternal interactions. The aim of this study was to examine the metabolite content of oEVs and its regulation across the estrous cycle in cattle. Oviductal EVs were isolated from bovine oviducts ipsilateral and contralateral to ovulation at four stages of the estrous cycle (post-ovulatory stage, early and late luteal phases, and pre-ovulatory stage). The metabolomic profiling of EVs was performed by proton nuclear magnetic resonance spectroscopy (NMR). NMR identified 22 metabolites in oEVs, among which 15 were quantified. Lactate, myoinositol, and glycine were the most abundant metabolites throughout the estrous cycle. The side relative to ovulation had no effect on the oEVs' metabolite concentrations. However, levels of glucose-1-phosphate and maltose were greatly affected by the cycle stage, showing up to 100-fold higher levels at the luteal phase than at the peri-ovulatory phases. In contrast, levels of methionine were significantly higher at peri-ovulatory phases than at the late-luteal phase. Quantitative enrichment analyses of oEV-metabolites across the cycle evidenced several significantly regulated metabolic pathways related to sucrose, glucose, and lactose metabolism. This study provides the first metabolomic characterization of oEVs, increasing our understanding of the potential role of oEVs in promoting fertilization and early embryo development.


Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells.

  • Virginie Maillard‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2018‎

Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers.


Seminal plasma differentially alters the resistance of dog, ram and boar spermatozoa to hypotonic stress.

  • Guillaume Tsikis‎ et al.
  • Animal reproduction science‎
  • 2018‎

During ejaculation and the deposition in the female genital tract, spermatozoa undergo hypo-osmotic stress and need to withstand it for optimal fertility. Resistance to hypo-osmotic stress may be affected by the interaction of the spermatozoa with seminal fluid components. The hypo-osmotic resistance of epididymal and ejaculated spermatozoa from dogs, rams and boars was assessed by flow cytometric measurement of sperm viability after incubation in NaCl solutions with osmolalities ranging from 0 to 300 mmol/kg. The hypotonic resistance of epididymal spermatozoa was greater than those of ejaculated spermatozoa in all three species. Among species comparison revealed that ejaculated spermatozoa from dogs were much more resistant than those from rams and boars as 80.4 ± 5.3%, 56.7 ± 4.7 and 9.6 ± 3.6% of live spermatozoa were observed following exposure to an osmolality of 90 mmol/kg in dogs, rams and boars respectively. This can be explained by the fact that dog, ram and boar differ markedly in composition of the seminal plasma owing to the presence (ram, boar) or absence (dog) of seminal vesicles. Hypotonic resistance of epididymal and ejaculated dog spermatozoa was similar whereas ram and boar spermatozoa showed a marked drop in resistance after ejaculation. The in vitro incubation of boar epididymal spermatozoa with raw seminal plasma or the seminal plasma protein fraction induced a similar loss of resistance, suggesting that seminal proteins are involved in the lack of resistance to hypotonic stress of boar ejaculated spermatozoa.


Binder of Sperm Proteins protect ram spermatozoa from freeze-thaw damage.

  • Taylor Pini‎ et al.
  • Cryobiology‎
  • 2018‎

Cryopreservation causes sub-lethal damage which limits the fertility of frozen thawed spermatozoa. Seminal plasma has been investigated as a cryoprotectant, but has yielded inconsistent results due to considerable variation in its constituents. Individual seminal plasma proteins offer an ideal alternative to whole seminal plasma, and several have been correlated with freezing success. Binder of Sperm Proteins (BSPs) are abundant ram seminal plasma proteins which have been suggested to have significant protective effects on ram spermatozoa during cold shock. This is in direct opposition to bull spermatozoa, where BSPs cause sperm deterioration during in vitro handling. We investigated the potential of BSP1 and BSP5 to prevent freezing associated damage to important functional parameters of ram spermatozoa. BSPs purified by size exclusion chromatography improved post thaw motility and penetration through artificial mucus. Highly purified BSP1 and BSP5, isolated by gelatin affinity and RP-HPLC, improved motility and membrane integrity, and reduced post thaw protein tyrosine phosphorylation. Exposure to BSP5 before freezing increased the amount of phosphatidylethanolamine on the sperm surface after thawing. Neither BSP1 nor BSP5 prevented freezing associated changes in membrane lipid disorder. These results suggest that BSPs may significantly improve freezing outcomes of ram spermatozoa.


Water stress combined with sulfur deficiency in pea affects yield components but mitigates the effect of deficiency on seed globulin composition.

  • Charlotte Henriet‎ et al.
  • Journal of experimental botany‎
  • 2019‎

Water stress and sulfur (S) deficiency are two constraints increasingly faced by crops due to climate change and low-input agricultural practices. To investigate their interaction in the grain legume pea (Pisum sativum), sulfate was depleted at the mid-vegetative stage and a moderate 9-d water stress period was imposed during the early reproductive phase. The combination of the stresses impeded reproductive processes in a synergistic manner, reducing seed weight and seed number, and inducing seed abortion, which highlighted the paramount importance of sulfur for maintaining seed yield components under water stress. On the other hand, the moderate water stress mitigated the negative effect of sulfur deficiency on the accumulation of S-rich globulins (11S) in seeds, probably due to a lower seed sink strength for nitrogen, enabling a readjustment of the ratio of S-poor (7S) to 11S globulins. Transcriptome analysis of developing seeds at the end of the combined stress period indicated that similar biological processes were regulated in response to sulfur deficiency and to the combined stress, but that the extent of the transcriptional regulation was greater under sulfur deficiency. Seeds from plants subjected to the combined stresses showed a specific up-regulation of a set of transcription factor and SUMO ligase genes, indicating the establishment of unique regulatory processes when sulfur deficiency is combined with water stress.


Oestrus synchronisation and superovulation alter the production and biochemical constituents of ovine cervicovaginal mucus.

  • Jessie W Maddison‎ et al.
  • Animal reproduction science‎
  • 2016‎

Controlled breeding programmes utilising exogenous hormones are common in the Australian sheep industry, however the effects of such programmes on cervicovaginal mucus properties are lacking. As such, the aim of this study was to investigate cervicovaginal (CV) mucus from naturally cycling (NAT), progesterone synchronised (P4), prostaglandin synchronised (PGF2α), and superovulated (SOV) Merino ewes. Experiment 1; volume, colour, spinnbarkeit, chemical profile and protein concentration of mucus (NAT, P4, PGF2α and SOV; n=5 ewes/treatment) during the follicular (5 d) and luteal phases (8 d) was investigated. Experiment 2; in vivo mucus pH and in vitro mucus penetration by frozen-thawed spermatozoa (NAT, P4 and SOV; n=11 ewes/treatment) was investigated over oestrus (2 d) and the mid-luteal phase (pH only, 2 d). Oestrus mucus was more abundant, clearer in colour and less proteinaceous than luteal phase mucus (p<0.05). SOV increased mucus production and protein concentration (p<0.05) while PGF2α reduced mucus volume (p<0.05). Mucus pH (oestrus 6.2-6.5), chemical profile and mucus penetration by sperm were unchanged (p>0.05). Results indicate that exogenous hormones used for controlled breeding affect cervicovaginal mucus production, but few other tested characteristics. Further research is required to explain fertility differences between synchronised and naturally cycling animals following cervical AI.


Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E.

  • Sergine Even‎ et al.
  • Nucleic acids research‎
  • 2005‎

Many prokaryotic organisms lack an equivalent of RNase E, which plays a key role in mRNA degradation in Escherichia coli. In this paper, we report the purification and identification by mass spectrometry in Bacillus subtilis of two paralogous endoribonucleases, here named RNases J1 and J2, which share functional homologies with RNase E but no sequence similarity. Both enzymes are able to cleave the B.subtilis thrS leader at a site that can also be cleaved by E.coli RNase E. We have previously shown that cleavage at this site increases the stability of the downstream messenger. Moreover, RNases J1/J2 are sensitive to the 5' phosphorylation state of the substrate in a site-specific manner. Orthologues of RNases J1/J2, which belong to the metallo-beta-lactamase family, are evolutionarily conserved in many prokaryotic organisms, representing a new family of endoribonucleases. RNases J1/J2 appear to be implicated in regulatory processing/maturation of specific mRNAs, such as the T-box family members thrS and thrZ, but may also contribute to global mRNA degradation.


Bisphenol S Impaired In Vitro Ovine Early Developmental Oocyte Competence.

  • Alice Desmarchais‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Bisphenol A (BPA) is a widespread compound in the plastic industry that is especially used to produce baby bottles, food packaging and metal cans. BPA, an endocrine disruptor, leads to alterations in reproductive function and therefore has been banned from the food industry. Unregulated BPA analogues, particularly Bisphenol S (BPS), have emerged and are now used in the plastic industry. Thus, this study aimed to examine the acute effects of low and environmental doses of BPS on ewe oocyte quality and developmental competence, and its mechanism of action, during in vitro maturation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: