Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

The protooncogene Ski controls Schwann cell proliferation and myelination.

  • Suzana Atanasoski‎ et al.
  • Neuron‎
  • 2004‎

Schwann cell proliferation and subsequent differentiation to nonmyelinating and myelinating cells are closely linked processes. Elucidating the molecular mechanisms that control these events is key to the understanding of nerve development, regeneration, nerve-sheath tumors, and neuropathies. We define the protooncogene Ski, an inhibitor of TGF-beta signaling, as an essential component of the machinery that controls Schwann cell proliferation and myelination. Functional Ski overexpression inhibits TGF-beta-mediated proliferation and prevents growth-arrested Schwann cells from reentering the cell cycle. Consistent with these findings, myelinating Schwann cells upregulate Ski during development and remyelination after injury. Myelination is blocked in myelin-competent cultures derived from Ski-deficient animals, and genes encoding myelin components are downregulated in Ski-deficient nerves. Conversely, overexpression of Ski in Schwann cells causes an upregulation of myelin-related genes. The myelination-regulating transcription factor Oct6 is involved in a complex modulatory relationship with Ski. We conclude that Ski is a crucial signal in Schwann cell development and myelination.


Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4.

  • Salvatore Cortellino‎ et al.
  • Developmental biology‎
  • 2009‎

Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling.


Complex relationship between mismatch repair proteins and MBD4 during immunoglobulin class switch recombination.

  • Fernando Grigera‎ et al.
  • PloS one‎
  • 2013‎

Mismatch repair (MMR) safeguards against genomic instability and is required for efficient Ig class switch recombination (CSR). Methyl CpG binding domain protein 4 (MBD4) binds to MutL homologue 1 (MLH1) and controls the post-transcriptional level of several MMR proteins, including MutS homologue 2 (MSH2). We show that in WT B cells activated for CSR, MBD4 is induced and interacts with MMR proteins, thereby implying a role for MBD4 in CSR. However, CSR is in the normal range in Mbd4 deficient mice deleted for exons 2-5 despite concomitant reduction of MSH2. We show by comparison in Msh2(+/-) B cells that a two-fold reduction of MSH2 and MBD4 proteins is correlated with impaired CSR. It is therefore surprising that CSR occurs at normal frequencies in the Mbd4 deficient B cells where MSH2 is reduced. We find that a variant Mbd4 transcript spanning exons 1,6-8 is expressed in Mbd4 deficient B cells. This transcript can be ectopically expressed and produces a truncated MBD4 peptide. Thus, the 3' end of the Mbd4 locus is not silent in Mbd4 deficient B cells and may contribute to CSR. Our findings highlight a complex relationship between MBD4 and MMR proteins in B cells and a potential reconsideration of their role in CSR.


A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity.

  • Alejandro Conde-Perez‎ et al.
  • Nature communications‎
  • 2015‎

Loss of the tumour suppressor PTEN is frequent in human melanoma, results in MAPK activation, suppresses senescence and mediates metastatic behaviour. How PTEN loss mediates these effects is unknown. Here we show that loss of PTEN in epithelial and melanocytic cell lines induces the nuclear localization and transcriptional activation of β-catenin independent of the PI3K-AKT-GSK3β axis. The absence of PTEN leads to caveolin-1 (CAV1)-dependent β-catenin transcriptional modulation in vitro, cooperates with NRAS(Q61K) to initiate melanomagenesis in vivo and induces efficient metastasis formation associated with E-cadherin internalization. The CAV1-β-catenin axis is mediated by a feedback loop in which β-catenin represses transcription of miR-199a-5p and miR-203, which suppress the levels of CAV1 mRNA in melanoma cells. These data reveal a mechanism by which loss of PTEN increases CAV1-mediated dissociation of β-catenin from membranous E-cadherin, which may promote senescence bypass and metastasis.


Thymine DNA glycosylase as a novel target for melanoma.

  • Pietro Mancuso‎ et al.
  • Oncogene‎
  • 2019‎

Melanoma is an aggressive neoplasm with increasing incidence that is classified by the NCI as a recalcitrant cancer, i.e., a cancer with poor prognosis, lacking progress in diagnosis and treatment. In addition to conventional therapy, melanoma treatment is currently based on targeting the BRAF/MEK/ERK signaling pathway and immune checkpoints. As drug resistance remains a major obstacle to treatment success, advanced therapeutic approaches based on novel targets are still urgently needed. We reasoned that the base excision repair enzyme thymine DNA glycosylase (TDG) could be such a target for its dual role in safeguarding the genome and the epigenome, by performing the last of the multiple steps in DNA demethylation. Here we show that TDG knockdown in melanoma cell lines causes cell cycle arrest, senescence, and death by mitotic alterations; alters the transcriptome and methylome; and impairs xenograft tumor formation. Importantly, untransformed melanocytes are minimally affected by TDG knockdown, and adult mice with conditional knockout of Tdg are viable. Candidate TDG inhibitors, identified through a high-throughput fluorescence-based screen, reduced viability and clonogenic capacity of melanoma cell lines and increased cellular levels of 5-carboxylcytosine, the last intermediate in DNA demethylation, indicating successful on-target activity. These findings suggest that TDG may provide critical functions specific to cancer cells that make it a highly suitable anti-melanoma drug target. By potentially disrupting both DNA repair and the epigenetic state, targeting TDG may represent a completely new approach to melanoma therapy.


An Intrinsic Epigenetic Barrier for Functional Axon Regeneration.

  • Yi-Lan Weng‎ et al.
  • Neuron‎
  • 2017‎

Mature neurons in the adult peripheral nervous system can effectively switch from a dormant state with little axonal growth to robust axon regeneration upon injury. The mechanisms by which injury unlocks mature neurons' intrinsic axonal growth competence are not well understood. Here, we show that peripheral sciatic nerve lesion in adult mice leads to elevated levels of Tet3 and 5-hydroxylmethylcytosine in dorsal root ganglion (DRG) neurons. Functionally, Tet3 is required for robust axon regeneration of DRG neurons and behavioral recovery. Mechanistically, peripheral nerve injury induces DNA demethylation and upregulation of multiple regeneration-associated genes in a Tet3- and thymine DNA glycosylase-dependent fashion in DRG neurons. In addition, Pten deletion-induced axon regeneration of retinal ganglion neurons in the adult CNS is attenuated upon Tet1 knockdown. Together, our study suggests an epigenetic barrier that can be removed by active DNA demethylation to permit axon regeneration in the adult mammalian nervous system.


The basal interstitial nucleus (BIN) of the cerebellum provides diffuse ascending inhibitory input to the floccular granule cell layer.

  • Dick Jaarsma‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

The basal interstitial nucleus (BIN) in the white matter of the vestibulocerebellum has been defined more than three decades ago, but has since been largely ignored. It is still unclear which neurotransmitters are being used by BIN neurons, how these neurons are connected to the rest of the brain and what their activity patterns look like. Here, we studied BIN neurons in a range of mammals, including macaque, human, rat, mouse, rabbit, and ferret, using tracing, immunohistological and electrophysiological approaches. We show that BIN neurons are GABAergic and glycinergic, that in primates they also express the marker for cholinergic neurons choline acetyl transferase (ChAT), that they project with beaded fibers to the glomeruli in the granular layer of the ipsilateral floccular complex, and that they are driven by excitation from the ipsilateral and contralateral medio-dorsal medullary gigantocellular reticular formation. Systematic analysis of codistribution of the inhibitory synapse marker VIAAT, BIN axons, and Golgi cell marker mGluR2 indicate that BIN axon terminals complement Golgi cell axon terminals in glomeruli, accounting for a considerable proportion ( > 20%) of the inhibitory terminals in the granule cell layer of the floccular complex. Together, these data show that BIN neurons represent a novel and relevant inhibitory input to the part of the vestibulocerebellum that controls compensatory and smooth pursuit eye movements.


Characterizing the molecular etiology of arthrogryposis multiplex congenita in patients with LGI4 mutations.

  • Daniel G Booth‎ et al.
  • Glia‎
  • 2021‎

Disruption of axon-glia interactions in the peripheral nervous system has emerged as a major cause of arthrogryposis multiplex congenita (AMC), a condition characterized by multiple congenital postural abnormalities involving the major joints. Several genes crucially important to the biology of Schwann cells have now been implicated with AMC. One such gene is LGI4 which encodes a secreted glycoprotein. LGI4 is expressed and secreted by Schwann cells and binds its receptor ADAM22 on the axonal membrane to drive myelination. Homozygous mutations in LGI4 or ADAM22 results in severe congenital hypomyelination and joint contractures in mice. Recently bi-allelic LGI4 loss of function mutations has been described in three unrelated families with severe AMC. Two individuals in a fourth, non-consanguineous family were found to be compound heterozygous for two LGI4 missense mutations. It is not known how these missense mutations affect the biology of LGI4. Here we investigated whether these missense mutations affected the secretion of the protein, its ADAM22 binding capacity, or its myelination-promoting function. We demonstrate that the mutations largely affect the progression of the mutant protein through the endomembrane system resulting in severely reduced expression. Importantly, binding to ADAM22 and myelination-promoting activity appear largely unaffected, suggesting that treatment with chemical chaperones to improve secretion of the mutant proteins might prove beneficial.


SuperCLEM: an accessible correlative light and electron microscopy approach for investigation of neurons and glia in vitro.

  • Daniel G Booth‎ et al.
  • Biology open‎
  • 2019‎

The rapid evolution of super-resolution light microscopy has narrowed the gap between light and electron microscopy, allowing the imaging of molecules and cellular structures at high resolution within their normal cellular and tissue context. Multimodal imaging approaches such as correlative light electron microscopy (CLEM) combine these techniques to create a tool with unique imaging capacity. However, these approaches are typically reserved for specialists, and their application to the analysis of neural tissue is challenging. Here we present SuperCLEM, a relatively simple approach that combines super-resolution fluorescence light microscopy (FLM), 3D electron microscopy (3D-EM) and rendering into 3D models. We demonstrate our workflow using neuron-glia cultures from which we first acquire high-resolution fluorescent light images of myelinated axons. After resin embedding and re-identification of the region of interest, serially aligned EM sections are acquired and imaged using a serial block face scanning electron microscope (SBF-SEM). The FLM and 3D-EM datasets are then combined to render 3D models of the myelinated axons. Thus, the SuperCLEM imaging pipeline is a useful new tool for researchers pursuing similar questions in neuronal and other complex tissue culture systems.


APC +/- alters colonic fibroblast proteome in FAP.

  • Bhavinkumar B Patel‎ et al.
  • Oncotarget‎
  • 2011‎

Here we compared the proteomes of primary fibroblast cultures derived from morphologically normal colonic mucosa of familial adenomatous polyposis (FAP) patients with those obtained from unaffected controls. The expression signature of about 19% of total fibroblast proteins separates FAP mutation carriers from unaffected controls (P < 0.01). More than 4,000 protein spots were quantified by 2D PAGE analysis, identifying 368 non-redundant proteins and 400 of their isoforms. Specifically, all three classes of cytoskeletal filaments and their regulatory proteins were altered as were oxidative stress response proteins. Given that FAP fibroblasts showed heightened sensitivity to transformation by KiMSV and SV40 including elevated levels of the p53 protein, events controlled in large measure by the Ras suppressor protein-1 (RSU-1) and oncogenic DJ-1, here we show decreased RSU1 and augmented DJ-1 expression in both fibroblasts and crypt-derived epithelial cells from morphologically normal colonic mucosa of FAP gene-carriers. The results indicate that heterozygosity for a mutant APC tumor suppressor gene alters the proteomes of both colon-derived normal fibroblasts in a gene-specific manner, consistent with a "one-hit" effect.


Dose dependent effects on cell cycle checkpoints and DNA repair by bendamustine.

  • Neil Beeharry‎ et al.
  • PloS one‎
  • 2012‎

Bendamustine (BDM) is an active chemotherapeutic agent approved in the U. S. for treating chronic lymphocytic leukemia and non-Hodgkin lymphoma. Its chemical structure suggests it may have alkylator and anti-metabolite activities; however the precise mechanism of action is not well understood. Here we report the concentration-dependent effects of BDM on cell cycle, DNA damage, checkpoint response and cell death in HeLa cells. Low concentrations of BDM transiently arrested cells in G2, while a 4-fold higher concentration arrested cells in S phase. DNA damage at 50, but not 200 µM, was efficiently repaired after 48 h treatment, suggesting a difference in DNA repair efficiency at the two concentrations. Indeed, perturbing base-excision repair sensitized cells to lower concentrations of BDM. Timelapse studies of the checkpoint response to BDM showed that inhibiting Chk1 caused both the S- and G2-arrested cells to prematurely enter mitosis. However, whereas the cells arrested in G2 (low dose BDM) entered mitosis, segregated their chromosomes and divided normally, the S-phase arrested cells (high dose BDM) exhibited a highly aberrant mitosis, whereby EM images showed highly fragmented chromosomes. The vast majority of these cells died without ever exiting mitosis. Inhibiting the Chk1-dependent DNA damage checkpoint accelerated the time of killing by BDM. Our studies suggest that BDM may affect different biological processes depending on drug concentration. Sensitizing cells to killing by BDM can be achieved by inhibiting base-excision repair or disrupting the DNA damage checkpoint pathway.


Octamer-binding factor 6 (Oct-6/Pou3f1) is induced by interferon and contributes to dsRNA-mediated transcriptional responses.

  • Elisabeth Hofmann‎ et al.
  • BMC cell biology‎
  • 2010‎

Octamer-binding factor 6 (Oct-6, Pou3f1, SCIP, Tst-1) is a transcription factor of the Pit-Oct-Unc (POU) family. POU proteins regulate key developmental processes and have been identified from a diverse range of species. Oct-6 expression is described to be confined to the developing brain, Schwann cells, oligodendrocyte precursors, testes, and skin. Its function is primarily characterised in Schwann cells, where it is required for correctly timed transition to the myelinating state. In the present study, we report that Oct-6 is an interferon (IFN)-inducible protein and show for the first time expression in murine fibroblasts and macrophages.


A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity.

  • Peng Li‎ et al.
  • Nature neuroscience‎
  • 2013‎

It is generally believed that cerebellar granule neurons originate exclusively from granule neuron precursors (GNPs) in the external germinal layer (EGL). Here we identified a rare population of neuronal progenitors in mouse developing cerebellum that expresses Nestin. Although Nestin is widely considered a marker for multipotent stem cells, these Nestin-expressing progenitors (NEPs) are committed to the granule neuron lineage. Unlike conventional GNPs, which reside in the outer EGL and proliferate extensively, NEPs reside in the deep part of the EGL and are quiescent. Expression profiling revealed that NEPs are distinct from GNPs and, in particular, express markedly reduced levels of genes associated with DNA repair. Consistent with this, upon aberrant activation of Sonic hedgehog (Shh) signaling, NEPs exhibited more severe genomic instability and gave rise to tumors more efficiently than GNPs. These studies revealed a previously unidentified progenitor for cerebellar granule neurons and a cell of origin for medulloblastoma.


Expression analysis of the CLCA gene family in mouse and human with emphasis on the nervous system.

  • Marko Piirsoo‎ et al.
  • BMC developmental biology‎
  • 2009‎

Members of the calcium-activated chloride channel (CLCA) gene family have been suggested to possess a variety of functions including cell adhesion and tumor suppression. Expression of CLCA family members has mostly been analyzed in non-neural tissues. Here we describe the expression of mouse and human CLCA genes in the nervous system.


14-3-3 proteins stabilize LGI1-ADAM22 levels to regulate seizure thresholds in mice.

  • Norihiko Yokoi‎ et al.
  • Cell reports‎
  • 2021‎

What percentage of the protein function is required to prevent disease symptoms is a fundamental question in genetic disorders. Decreased transsynaptic LGI1-ADAM22 protein complexes, because of their mutations or autoantibodies, cause epilepsy and amnesia. However, it remains unclear how LGI1-ADAM22 levels are regulated and how much LGI1-ADAM22 function is required. Here, by genetic and structural analysis, we demonstrate that quantitative dual phosphorylation of ADAM22 by protein kinase A (PKA) mediates high-affinity binding of ADAM22 to dimerized 14-3-3. This interaction protects LGI1-ADAM22 from endocytosis-dependent degradation. Accordingly, forskolin-induced PKA activation increases ADAM22 levels. Leveraging a series of ADAM22 and LGI1 hypomorphic mice, we find that ∼50% of LGI1 and ∼10% of ADAM22 levels are sufficient to prevent lethal epilepsy. Furthermore, ADAM22 function is required in excitatory and inhibitory neurons. These results suggest strategies to increase LGI1-ADAM22 complexes over the required levels by targeting PKA or 14-3-3 for epilepsy treatment.


BRCA1 Mutation-Specific Responses to 53BP1 Loss-Induced Homologous Recombination and PARP Inhibitor Resistance.

  • Joseph Nacson‎ et al.
  • Cell reports‎
  • 2018‎

BRCA1 functions in homologous recombination (HR) both up- and downstream of DNA end resection. However, in cells with 53BP1 gene knockout (KO), BRCA1 is dispensable for the initiation of resection, but whether BRCA1 activity is entirely redundant after end resection is unclear. Here, we found that 53bp1 KO rescued the embryonic viability of a Brca1ΔC/ΔC mouse model that harbors a stop codon in the coiled-coil domain. However, Brca1ΔC/ΔC;53bp1-/- mice were susceptible to tumor formation, lacked Rad51 foci, and were sensitive to PARP inhibitor (PARPi) treatment, indicative of suboptimal HR. Furthermore, BRCA1 mutant cancer cell lines were dependent on truncated BRCA1 proteins that retained the ability to interact with PALB2 for 53BP1 KO induced RAD51 foci and PARPi resistance. Our data suggest that the overall efficiency of 53BP1 loss of function induced HR may be BRCA1 mutation dependent. In the setting of 53BP1 KO, hypomorphic BRCA1 proteins are active downstream of end resection, promoting RAD51 loading and PARPi resistance.


STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration.

  • Cristina Benito‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population.SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal parts of injured nerves repair, Schwann cells gradually lose regeneration-supporting features and eventually die. Identification of signals that sustain repair cells is therefore an important goal. We have found that in mice the transcription factor STAT3 protects these cells from death and contributes to maintaining the molecular and morphological repair phenotype that promotes axonal regeneration. Defining the molecular mechanisms that maintain repair Schwann cells is an essential step toward developing therapeutic strategies that improve nerve regeneration and functional recovery.


Inhibitor of DNA Binding 4 (ID4) is highly expressed in human melanoma tissues and may function to restrict normal differentiation of melanoma cells.

  • Yuval Peretz‎ et al.
  • PloS one‎
  • 2015‎

Melanoma tissues and cell lines are heterogeneous, and include cells with invasive, proliferative, stem cell-like, and differentiated properties. Such heterogeneity likely contributes to the aggressiveness of the disease and resistance to therapy. One model suggests that heterogeneity arises from rare cancer stem cells (CSCs) that produce distinct cancer cell lineages. Another model suggests that heterogeneity arises through reversible cellular plasticity, or phenotype-switching. Recent work indicates that phenotype-switching may include the ability of cancer cells to dedifferentiate to a stem cell-like state. We set out to investigate the phenotype-switching capabilities of melanoma cells, and used unbiased methods to identify genes that may control such switching. We developed a system to reversibly synchronize melanoma cells between 2D-monolayer and 3D-stem cell-like growth states. Melanoma cells maintained in the stem cell-like state showed a striking upregulation of a gene set related to development and neural stem cell biology, which included SRY-box 2 (SOX2) and Inhibitor of DNA Binding 4 (ID4). A gene set related to cancer cell motility and invasiveness was concomitantly downregulated. Intense and pervasive ID4 protein expression was detected in human melanoma tissue samples, suggesting disease relevance for this protein. SiRNA knockdown of ID4 inhibited switching from monolayer to 3D-stem cell-like growth, and instead promoted switching to a highly differentiated, neuronal-like morphology. We suggest that ID4 is upregulated in melanoma as part of a stem cell-like program that facilitates further adaptive plasticity. ID4 may contribute to disease by preventing stem cell-like melanoma cells from progressing to a normal differentiated state. This interpretation is guided by the known role of ID4 as a differentiation inhibitor during normal development. The melanoma stem cell-like state may be protected by factors such as ID4, thereby potentially identifying a new therapeutic vulnerability to drive differentiation to the normal cell phenotype.


Integrin-linked kinase is required for radial sorting of axons and Schwann cell remyelination in the peripheral nervous system.

  • Jorge A Pereira‎ et al.
  • The Journal of cell biology‎
  • 2009‎

During development, Schwann cells (SCs) interpret different extracellular cues to regulate their migration, proliferation, and the remarkable morphological changes associated with the sorting, ensheathment, and myelination of axons. Although interactions between extracellular matrix proteins and integrins are critical to some of these processes, the downstream signaling pathways they control are still poorly understood. Integrin-linked kinase (ILK) is a focal adhesion protein that associates with multiple binding partners to link integrins to the actin cytoskeleton and is thought to participate in integrin and growth factor-mediated signaling. Using SC-specific gene ablation, we report essential functions for ILK in radial sorting of axon bundles and in remyelination in the peripheral nervous system. Our in vivo and in vitro experiments show that ILK negatively regulates Rho/Rho kinase signaling to promote SC process extension and to initiate radial sorting. ILK also facilitates axon remyelination, likely by promoting the activation of downstream molecules such as AKT/protein kinase B.


VILIP-1 downregulation in non-small cell lung carcinomas: mechanisms and prediction of survival.

  • Jian Fu‎ et al.
  • PloS one‎
  • 2008‎

VILIP-1, a member of the neuronal Ca++ sensor protein family, acts as a tumor suppressor gene in an experimental animal model by inhibiting cell proliferation, adhesion and invasiveness of squamous cell carcinoma cells. Western Blot analysis of human tumor cells showed that VILIP-1 expression was undetectable in several types of human tumor cells, including 11 out of 12 non-small cell lung carcinoma (NSCLC) cell lines. The down-regulation of VILIP-1 was due to loss of VILIP-1 mRNA transcripts. Rearrangements, large gene deletions or mutations were not found. Hypermethylation of the VILIP-1 promoter played an important role in gene silencing. In most VILIP-1-silent cells the VILIP-1 promoter was methylated. In vitro methylation of the VILIP-1 promoter reduced its activity in a promoter-reporter assay. Transcriptional activity of endogenous VILIP-1 promoter was recovered by treatment with 5'-aza-2'-deoxycytidine (5'-Aza-dC). Trichostatin A (TSA), a histone deacetylase inhibitor, potently induced VILIP-1 expression, indicating that histone deacetylation is an additional mechanism of VILIP-1 silencing. TSA increased histone H3 and H4 acetylation in the region of the VILIP-1 promoter. Furthermore, statistical analysis of expression and promoter methylation (n = 150 primary NSCLC samples) showed a significant relationship between promoter methylation and protein expression downregulation as well as between survival and decreased or absent VILIP-1 expression in lung cancer tissues (p<0.0001). VILIP-1 expression is silenced by promoter hypermethylation and histone deacetylation in aggressive NSCLC cell lines and primary tumors and its clinical evaluation could have a role as a predictor of short-term survival in lung cancer patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: