Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium.

  • Hannah M Read‎ et al.
  • PeerJ‎
  • 2016‎

Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments.


Transcriptomic Changes in Rat Cortex and Brainstem After Cortical Spreading Depression With or Without Pretreatment With Migraine Prophylactic Drugs.

  • Cèlia Sintas‎ et al.
  • The journal of pain‎
  • 2017‎

Migraine with aura is a subtype of migraine characterized by transient neurological disturbances that usually precede headache. Cortical spreading depression (CSD) is the likely pathophysiological correlate of the aura phase of migraine, found in common and rare forms of migraine, such as familial hemiplegic migraine. CSD is a depolarization wave that propagates across the cerebral gray matter transiently suppressing neuronal activity. Prophylactic treatments for migraine, such as topiramate or valproate, reduce the number of CSD events. We evaluated changes in gene expression in rat cortex and brainstem after inducing CSD in the cortex, with and without a prophylactic treatment with topiramate or valproate. CSD induction showed similar transcriptomic profiles with and without treatment in cortex, involving genes related to hormone stimulus, apoptosis, synaptic transmission, and interleukin signaling. In brainstem, CSD with and without treatment, although to a lesser extent, also induced gene expression changes involving genes related to apoptosis. Half of the genes altered in brainstem after CSD were also differentially expressed in the same direction in cortex. No differences in gene expression were identified after CSD as a consequence of the treatments, neither in cortex nor in brainstem.


Assessing telomeric DNA content in pediatric cancers using whole-genome sequencing data.

  • Matthew Parker‎ et al.
  • Genome biology‎
  • 2012‎

Telomeres are the protective arrays of tandem TTAGGG sequence and associated proteins at the termini of chromosomes. Telomeres shorten at each cell division due to the end-replication problem and are maintained above a critical threshold in malignant cancer cells to prevent cellular senescence or apoptosis. With the recent advances in massive parallel sequencing, assessing telomere content in the context of other cancer genomic aberrations becomes an attractive possibility. We present the first comprehensive analysis of telomeric DNA content change in tumors using whole-genome sequencing data from 235 pediatric cancers.


Radial glia cells are candidate stem cells of ependymoma.

  • Michael D Taylor‎ et al.
  • Cancer cell‎
  • 2005‎

Tumors of the same histologic type often comprise clinically and molecularly distinct subgroups; however, the etiology of these subgroups is unknown. Here, we report that histologically identical, but genetically distinct, ependymomas exhibit patterns of gene expression that recapitulate those of radial glia cells in the corresponding region of the central nervous system. Cancer stem cells isolated from ependymomas displayed a radial glia phenotype and formed tumors when orthotopically transplanted in mice. These findings identify restricted populations of radial glia cells as candidate stem cells of the different subgroups of ependymoma, and they support a general hypothesis that subgroups of the same histologic tumor type are generated by different populations of progenitor cells in the tissues of origin.


Epilepsy with migrating focal seizures: KCNT1 mutation hotspots and phenotype variability.

  • Giulia Barcia‎ et al.
  • Neurology. Genetics‎
  • 2019‎

To report new sporadic cases and 1 family with epilepsy of infancy with migrating focal seizures (EIMFSs) due to KCNT1 gain-of-function and to assess therapies' efficacy including quinidine.


Loss of seryl-tRNA synthetase (SARS1) causes complex spastic paraplegia and cellular senescence.

  • Edgard Verdura‎ et al.
  • Journal of medical genetics‎
  • 2022‎

Aminoacyl-tRNA synthetases (ARS) are key enzymes catalysing the first reactions in protein synthesis, with increasingly recognised pleiotropic roles in tumourgenesis, angiogenesis, immune response and lifespan. Germline mutations in several ARS genes have been associated with both recessive and dominant neurological diseases. Recently, patients affected with microcephaly, intellectual disability and ataxia harbouring biallelic variants in the seryl-tRNA synthetase encoded by seryl-tRNA synthetase 1 (SARS1) were reported.


Rare functional genetic variants in COL7A1, COL6A5, COL1A2 and COL5A2 frequently occur in Chiari Malformation Type 1.

  • Aintzane Urbizu‎ et al.
  • PloS one‎
  • 2021‎

Chiari Malformation Type 1 (CM-1) is characterized by herniation of the cerebellar tonsils below the foramen magnum and the presence of headaches and other neurologic symptoms. Cranial bone constriction is suspected to be the most common biologic mechanism leading to CM-1. However, other mechanisms may also contribute, particularly in the presence of connective tissue disorders (CTDs), such as Ehlers Danlos Syndrome (EDS). Accumulating data suggest CM-1 with connective tissue disorders (CTD+) may have a different patho-mechanism and different genetic risk factors than CM-1 without CTDs (CTD-). To identify CM-1 genetic risk variants, we performed whole exome sequencing on a single large, multiplex family from Spain and targeted sequencing on a cohort of 186 unrelated adult, Caucasian females with CM-1. Targeted sequencing captured the coding regions of 21 CM-1 and EDS candidate genes, including two genes identified in the Spanish family. Using gene burden analysis, we compared the frequency of rare, functional variants detected in CM-1 cases versus publically available ethnically-matched controls from gnomAD. A secondary analysis compared the presence of rare variants in these genes between CTD+ and CTD- CM-1 cases. In the Spanish family, rare variants co-segregated with CM-1 in COL6A5, ADGRB3 and DST. A variant in COL7A1 was present in affected and unaffected family members. In the targeted sequencing analysis, rare variants in six genes (COL7A1, COL5A2, COL6A5, COL1A2, VEGFB, FLT1) were significantly more frequent in CM-1 cases compared to public controls. In total, 47% of CM-1 cases presented with rare variants in at least one of the four significant collagen genes and 10% of cases harbored variants in multiple significant collagen genes. Moreover, 26% of CM-1 cases presented with rare variants in the COL6A5 gene. We also identified two genes (COL7A1, COL3A1) for which the burden of rare variants differed significantly between CTD+ and CTD- CM-1 cases. A higher percentage of CTD+ patients had variants in COL7A1 compared to CTD+ patients, while CTD+ patients had fewer rare variants in COL3A1 than did CTD- patients. In summary, rare variants in several collagen genes are particularly frequent in CM-1 cases and those in COL6A5 co-segregated with CM-1 in a Spanish multiplex family. COL6A5 has been previously associated with musculoskeletal phenotypes, but this is the first association with CM-1. Our findings underscore the contribution of rare genetic variants in collagen genes to CM-1, and suggest that CM-1 in the presence and absence of CTD symptoms is driven by different genes.


Cross-Species Genomics Identifies TAF12, NFYC, and RAD54L as Choroid Plexus Carcinoma Oncogenes.

  • Yiai Tong‎ et al.
  • Cancer cell‎
  • 2015‎

Choroid plexus carcinomas (CPCs) are poorly understood and frequently lethal brain tumors with few treatment options. Using a mouse model of the disease and a large cohort of human CPCs, we performed a cross-species, genome-wide search for oncogenes within syntenic regions of chromosome gain. TAF12, NFYC, and RAD54L co-located on human chromosome 1p32-35.3 and mouse chromosome 4qD1-D3 were identified as oncogenes that are gained in tumors in both species and required for disease initiation and progression. TAF12 and NFYC are transcription factors that regulate the epigenome, whereas RAD54L plays a central role in DNA repair. Our data identify a group of concurrently gained oncogenes that cooperate in the formation of CPC and reveal potential avenues for therapy.


Clinical course of sly syndrome (mucopolysaccharidosis type VII).

  • Adriana M Montaño‎ et al.
  • Journal of medical genetics‎
  • 2016‎

Mucopolysaccharidosis VII (MPS VII) is an ultra-rare disease characterised by the deficiency of β-glucuronidase (GUS). Patients' phenotypes vary from severe forms with hydrops fetalis, skeletal dysplasia and mental retardation to milder forms with fewer manifestations and mild skeletal abnormalities. Accurate assessments on the frequency and clinical characteristics of the disease have been scarce. The aim of this study was to collect such data.


Biallelic SZT2 mutations cause infantile encephalopathy with epilepsy and dysmorphic corpus callosum.

  • Lina Basel-Vanagaite‎ et al.
  • American journal of human genetics‎
  • 2013‎

Epileptic encephalopathies are genetically heterogeneous severe disorders in which epileptic activity contributes to neurological deterioration. We studied two unrelated children presenting with a distinctive early-onset epileptic encephalopathy characterized by refractory epilepsy and absent developmental milestones, as well as thick and short corpus callosum and persistent cavum septum pellucidum on brain MRI. Using whole-exome sequencing, we identified biallelic mutations in seizure threshold 2 (SZT2) in both affected children. The causative mutations include a homozygous nonsense mutation and a nonsense mutation together with an exonic splice-site mutation in a compound-heterozygous state. The latter mutation leads to exon skipping and premature termination of translation, as shown by RT-PCR in blood RNA of the affected boy. Thus, all three mutations are predicted to result in nonsense-mediated mRNA decay and/or premature protein truncation and thereby loss of SZT2 function. Although the molecular role of the peroxisomal protein SZT2 in neuronal excitability and brain development remains to be defined, Szt2 has been shown to influence seizure threshold and epileptogenesis in mice, consistent with our findings in humans. We conclude that mutations in SZT2 cause a severe type of autosomal-recessive infantile encephalopathy with intractable seizures and distinct neuroradiological anomalies.


The TOSCA Registry for Tuberous Sclerosis-Lessons Learnt for Future Registry Development in Rare and Complex Diseases.

  • Ruben Marques‎ et al.
  • Frontiers in neurology‎
  • 2019‎

Introduction: The TuberOus SClerosis registry to increase disease Awareness (TOSCA) is an international disease registry designed to provide insights into the clinical characteristics of patients with Tuberous Sclerosis Complex (TSC). The aims of this study were to identify issues that arose during the design, execution, and publication phases of TOSCA, and to reflect on lessons learnt that may guide future registries in rare and complex diseases. Methods: A questionnaire was designed to identify the strengths, weaknesses, and issues that arose at any stage of development and implementation of the TOSCA registry. The questionnaire contained 225 questions distributed in 7 sections (identification of issues during registry planning, during the operation of the registry, during data analysis, during the publication of the results, other issues, assessment of lessons learnt, and additional comments), and was sent by e-mail to 511 people involved in the registry, including 28 members of the Scientific Advisory Board (SAB), 162 principal investigators (PIs), and 321 employees of the sponsor belonging to the medical department or that were clinical research associate (CRA). Questionnaires received within the 2 months from the initial mailing were included in the analysis. Results: A total of 53 (10.4%) questionnaires were received (64.3% for SAB members, 12.3% for PIs and 4.7% for employees of the sponsor), and the overall completeness rate for closed questions was 87.6%. The most common issues identified were the limited duration of the registry (38%) and issues related to handling of missing data (32%). In addition, 25% of the respondents commented that biases might have compromised the validity of the results. More than 80% of the respondents reported that the registry improved the knowledge on the natural history and manifestations of TSC, increased disease awareness and helped to identify relevant information for clinical research in TSC. Conclusions: This analysis shows the importance of registries as a powerful tool to increase disease awareness, to produce real-world evidence, and to generate questions for future research. However, there is a need to implement strategies to ensure patient retention and long-term sustainability of patient registries, to improve data quality, and to reduce biases.


Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma.

  • Chen He‎ et al.
  • Nature communications‎
  • 2021‎

Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.


TuberOus SClerosis registry to increAse disease awareness (TOSCA) Post-Authorisation Safety Study of Everolimus in Patients With Tuberous Sclerosis Complex.

  • J Chris Kingswood‎ et al.
  • Frontiers in neurology‎
  • 2021‎

This non-interventional post-authorisation safety study (PASS) assessed the long-term safety of everolimus in patients with tuberous sclerosis complex (TSC) who participated in the TuberOus SClerosis registry to increase disease Awareness (TOSCA) clinical study and received everolimus for the licensed indications in the European Union. The rate of adverse events (AEs), AEs that led to dose adjustments or treatment discontinuation, AEs of potential clinical interest, treatment-related AEs (TRAEs), serious AEs (SAEs), and deaths were documented. One hundred seventy-nine patients were included in the first 5 years of observation; 118 of 179 patients had an AE of any grade, with the most common AEs being stomatitis (7.8%) and headache (7.3%). AEs caused dose adjustments in 56 patients (31.3%) and treatment discontinuation in nine patients (5%). AEs appeared to be more frequent and severe in children. On Tanner staging, all patients displayed signs of age-appropriate sexual maturation. Twenty-two of 106 female (20.8%) patients had menstrual cycle disorders. The most frequent TRAEs were stomatitis (6.7%) and aphthous mouth ulcer (5.6%). SAEs were reported in 54 patients (30.2%); the most frequent SAE was pneumonia (>3% patients; grade 2, 1.1%, and grade 3, 2.8%). Three deaths were reported, all in patients who had discontinued everolimus for more than 28 days, and none were thought to be related to everolimus according to the treating physicians. The PASS sub-study reflects the safety and tolerability of everolimus in the management of TSC in real-world routine clinical practice.


Rare and de novo coding variants in chromodomain genes in Chiari I malformation.

  • Brooke Sadler‎ et al.
  • American journal of human genetics‎
  • 2021‎

Chiari I malformation (CM1), the displacement of the cerebellum through the foramen magnum into the spinal canal, is one of the most common pediatric neurological conditions. Individuals with CM1 can present with neurological symptoms, including severe headaches and sensory or motor deficits, often as a consequence of brainstem compression or syringomyelia (SM). We conducted whole-exome sequencing (WES) on 668 CM1 probands and 232 family members and performed gene-burden and de novo enrichment analyses. A significant enrichment of rare and de novo non-synonymous variants in chromodomain (CHD) genes was observed among individuals with CM1 (combined p = 2.4 × 10-10), including 3 de novo loss-of-function variants in CHD8 (LOF enrichment p = 1.9 × 10-10) and a significant burden of rare transmitted variants in CHD3 (p = 1.8 × 10-6). Overall, individuals with CM1 were found to have significantly increased head circumference (p = 2.6 × 10-9), with many harboring CHD rare variants having macrocephaly. Finally, haploinsufficiency for chd8 in zebrafish led to macrocephaly and posterior hindbrain displacement reminiscent of CM1. These results implicate chromodomain genes and excessive brain growth in CM1 pathogenesis.


Cortical thickness and behavior abnormalities in children born preterm.

  • Leire Zubiaurre-Elorza‎ et al.
  • PloS one‎
  • 2012‎

To identify long-term effects of preterm birth and of periventricular leukomalacia (PVL) on cortical thickness (CTh). To study the relationship between CTh and cognitive-behavioral abnormalities.


Biallelic PI4KA variants cause a novel neurodevelopmental syndrome with hypomyelinating leukodystrophy.

  • Edgard Verdura‎ et al.
  • Brain : a journal of neurology‎
  • 2021‎

Phosphoinositides are lipids that play a critical role in processes such as cellular signalling, ion channel activity and membrane trafficking. When mutated, several genes that encode proteins that participate in the metabolism of these lipids give rise to neurological or developmental phenotypes. PI4KA is a phosphoinositide kinase that is highly expressed in the brain and is essential for life. Here we used whole exome or genome sequencing to identify 10 unrelated patients harbouring biallelic variants in PI4KA that caused a spectrum of conditions ranging from severe global neurodevelopmental delay with hypomyelination and developmental brain abnormalities to pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Functional analyses by western blotting and immunofluorescence showed decreased PI4KA levels in the patients' fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells. In conclusion, we report a novel severe metabolic disorder caused by PI4KA malfunction, highlighting the importance of phosphoinositide signalling in human brain development and the myelin sheath.


A guide to writing systematic reviews of rare disease treatments to generate FAIR-compliant datasets: building a Treatabolome.

  • Antonio Atalaia‎ et al.
  • Orphanet journal of rare diseases‎
  • 2020‎

Rare diseases are individually rare but globally affect around 6% of the population, and in over 70% of cases are genetically determined. Their rarity translates into a delayed diagnosis, with 25% of patients waiting 5 to 30 years for one. It is essential to raise awareness of patients and clinicians of existing gene and variant-specific therapeutics at the time of diagnosis to avoid that treatment delays add up to the diagnostic odyssey of rare diseases' patients and their families.


A homozygous loss-of-function mutation in PDE2A associated to early-onset hereditary chorea.

  • Vincenzo Salpietro‎ et al.
  • Movement disorders : official journal of the Movement Disorder Society‎
  • 2018‎

We investigated a family that presented with an infantile-onset chorea-predominant movement disorder, negative for NKX2-1, ADCY5, and PDE10A mutations.


A De Novo Mouse Model of C11orf95-RELA Fusion-Driven Ependymoma Identifies Driver Functions in Addition to NF-κB.

  • Tatsuya Ozawa‎ et al.
  • Cell reports‎
  • 2018‎

The majority of supratentorial ependymomas (ST-ependymomas) have few mutations but frequently display chromothripsis of chromosome 11q that generates a fusion between C11orf95 and RELA (RELAFUS). Neural stem cells transduced with RELAFUSex vivo form ependymomas when implanted in the brain. These tumors display enhanced NF-κB signaling, suggesting that this aberrant signal is the principal mechanism of oncogenesis. However, it is not known whether RELAFUS is sufficient to drive de novo ependymoma tumorigenesis in the brain and, if so, whether these tumors also arise from neural stem cells. We show that RELAFUS drives ST-ependymoma formation from periventricular neural stem cells in mice and that RELAFUS-induced tumorigenesis is likely dependent on a series of cell signaling pathways in addition to NF-κB.


Reduced hippocampal subfield volumes and memory performance in preterm children with and without germinal matrix-intraventricular hemorrhage.

  • Lexuri Fernández de Gamarra-Oca‎ et al.
  • Scientific reports‎
  • 2021‎

Preterm newborns with germinal matrix-intraventricular hemorrhage (GM-IVH) are at a higher risk of evidencing neurodevelopmental alterations. Present study aimed to explore the long-term effects that GM-IVH have on hippocampal subfields, and their correlates with memory. The sample consisted of 58 participants, including 36 preterm-born (16 with GM-IVH and 20 without neonatal brain injury), and 22 full-term children aged between 6 and 15 years old. All participants underwent a cognitive assessment and magnetic resonance imaging study. GM-IVH children evidenced lower scores in Full Intelligence Quotient and memory measures compared to their low-risk preterm and full-term peers. High-risk preterm children with GM-IVH evidenced significantly lower total hippocampal volumes bilaterally and hippocampal subfield volumes compared to both low-risk preterm and full-term groups. Finally, significant positive correlations between memory and hippocampal subfield volumes were only found in preterm participants together; memory and the right CA-field correlation remained significant after Bonferroni correction was applied (p = .002). In conclusion, memory alterations and both global and regional volumetric reductions in the hippocampus were found to be specifically related to a preterm sample with GM-IVH. Nevertheless, results also suggest that prematurity per se has a long-lasting impact on the association between the right CA-field volume and memory during childhood.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: