Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Addressing confounding artifacts in reconstruction of gene co-expression networks.

  • Princy Parsana‎ et al.
  • Genome biology‎
  • 2019‎

Gene co-expression networks capture biological relationships between genes and are important tools in predicting gene function and understanding disease mechanisms. We show that technical and biological artifacts in gene expression data confound commonly used network reconstruction algorithms. We demonstrate theoretically, in simulation, and empirically, that principal component correction of gene expression measurements prior to network inference can reduce false discoveries. Using data from the GTEx project in multiple tissues, we show that this approach reduces false discoveries beyond correcting only for known confounders.


Hypermethylation in the ZBTB20 gene is associated with major depressive disorder.

  • Matthew N Davies‎ et al.
  • Genome biology‎
  • 2014‎

Although genetic variation is believed to contribute to an individual's susceptibility to major depressive disorder, genome-wide association studies have not yet identified associations that could explain the full etiology of the disease. Epigenetics is increasingly believed to play a major role in the development of common clinical phenotypes, including major depressive disorder.


Genetic regulation of gene expression and splicing during a 10-year period of human aging.

  • Brunilda Balliu‎ et al.
  • Genome biology‎
  • 2019‎

Molecular and cellular changes are intrinsic to aging and age-related diseases. Prior cross-sectional studies have investigated the combined effects of age and genetics on gene expression and alternative splicing; however, there has been no long-term, longitudinal characterization of these molecular changes, especially in older age.


GBAT: a gene-based association test for robust detection of trans-gene regulation.

  • Xuanyao Liu‎ et al.
  • Genome biology‎
  • 2020‎

The observation that disease-associated genetic variants typically reside outside of exons has inspired widespread investigation into the genetic basis of transcriptional regulation. While associations between the mRNA abundance of a gene and its proximal SNPs (cis-eQTLs) are now readily identified, identification of high-quality distal associations (trans-eQTLs) has been limited by a heavy multiple testing burden and the proneness to false-positive signals. To address these issues, we develop GBAT, a powerful gene-based pipeline that allows robust detection of high-quality trans-gene regulation signal.


sn-spMF: matrix factorization informs tissue-specific genetic regulation of gene expression.

  • Yuan He‎ et al.
  • Genome biology‎
  • 2020‎

Genetic regulation of gene expression, revealed by expression quantitative trait loci (eQTLs), exhibits complex patterns of tissue-specific effects. Characterization of these patterns may allow us to better understand mechanisms of gene regulation and disease etiology. We develop a constrained matrix factorization model, sn-spMF, to learn patterns of tissue-sharing and apply it to 49 human tissues from the Genotype-Tissue Expression (GTEx) project. The learned factors reflect tissues with known biological similarity and identify transcription factors that may mediate tissue-specific effects. sn-spMF, available at https://github.com/heyuan7676/ts_eQTLs , can be applied to learn biologically interpretable patterns of eQTL tissue-specificity and generate testable mechanistic hypotheses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: