Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 52 papers

Fine-scale detection of population-specific linkage disequilibrium using haplotype entropy in the human genome.

  • Hideaki Mizuno‎ et al.
  • BMC genetics‎
  • 2010‎

The creation of a coherent genomic map of recent selection is one of the greatest challenges towards a better understanding of human evolution and the identification of functional genetic variants. Several methods have been proposed to detect linkage disequilibrium (LD), which is indicative of natural selection, from genome-wide profiles of common genetic variations but are designed for large regions.


Genetic dissection of differential signaling threshold requirements for the Wnt/beta-catenin pathway in vivo.

  • Michael Buchert‎ et al.
  • PLoS genetics‎
  • 2010‎

Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/beta-catenin pathway, we challenged the allele combinations by genetically restricting intracellular beta-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/beta-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/beta-catenin signaling capacity similar to that in the germline of the Apc(min) mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apc(min) mice arise independently of intestinal tumorigenesis. Together, the present genotype-phenotype analysis suggests tissue-specific response levels for the Wnt/beta-catenin pathway that regulate both physiological and pathophysiological conditions.


Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers.

  • Pietro Carotenuto‎ et al.
  • Gut‎
  • 2017‎

Transcribed-ultraconserved regions (T-UCR) are long non-coding RNAs which are conserved across species and are involved in carcinogenesis. We studied T-UCRs downstream of the Wnt/β-catenin pathway in liver cancer.


ERBB2 overexpression suppresses stress-induced autophagy and renders ERBB2-induced mammary tumorigenesis independent of monoallelic Becn1 loss.

  • Fred Lozy‎ et al.
  • Autophagy‎
  • 2014‎

Defective autophagy has been implicated in mammary tumorigenesis, as the gene encoding the essential autophagy regulator BECN1 is deleted in human breast cancers and Becn1(+/-) mice develop mammary hyperplasias. In agreement with a recent study, which reports concurrent allelic BECN1 loss and ERBB2 amplification in a small number of human breast tumors, we found that low BECN1 mRNA correlates with ERBB2-overexpression in breast cancers, suggesting that BECN1 loss and ERBB2 overexpression may functionally interact in mammary tumorigenesis. We now report that ERBB2 overexpression suppressed autophagic response to stress in mouse mammary and human breast cancer cells. ERBB2-overexpressing Becn1(+/+) and Becn1(+/-) immortalized mouse mammary epithelial cells (iMMECs) formed mammary tumors in nude mice with similar kinetics, and monoallelic Becn1 loss did not alter ERBB2- and PyMT-driven mammary tumorigenesis. In human breast cancer databases, ERBB2-expressing tumors exhibit a low autophagy gene signature, independent of BECN1 mRNA expression, and have similar gene expression profiles with non-ERBB2-expressing breast tumors with low BECN1 levels. We also found that ERBB2-expressing BT474 breast cancer cells, despite being partially autophagy-deficient under stress, can be sensitized to the anti-ERBB2 antibody trastuzumab (tzb) by further pharmacological or genetic autophagy inhibition. Our results indicate that ERBB2-driven mammary tumorigenesis is associated with functional autophagy suppression and ERBB2-positive breast cancers are partially autophagy-deficient even in a wild-type BECN1 background. Furthermore and extending earlier findings using tzb-resistant cells, exogenously imposed autophagy inhibition increases the anticancer effect of trastuzumab on tzb-sensitive ERBB2-expressing breast tumor cells, indicating that pharmacological autophagy suppression has a wider role in the treatment of ERBB2-positive breast cancer.


Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma.

  • Patrizia Cammareri‎ et al.
  • Nature communications‎
  • 2016‎

Melanoma patients treated with oncogenic BRAF inhibitors can develop cutaneous squamous cell carcinoma (cSCC) within weeks of treatment, driven by paradoxical RAS/RAF/MAPK pathway activation. Here we identify frequent TGFBR1 and TGFBR2 mutations in human vemurafenib-induced skin lesions and in sporadic cSCC. Functional analysis reveals these mutations ablate canonical TGFβ Smad signalling, which is localized to bulge stem cells in both normal human and murine skin. MAPK pathway hyperactivation (through Braf(V600E) or Kras(G12D) knockin) and TGFβ signalling ablation (through Tgfbr1 deletion) in LGR5(+ve) stem cells enables rapid cSCC development in the mouse. Mutation of Tp53 (which is commonly mutated in sporadic cSCC) coupled with Tgfbr1 deletion in LGR5(+ve) cells also results in cSCC development. These findings indicate that LGR5(+ve) stem cells may act as cells of origin for cSCC, and that RAS/RAF/MAPK pathway hyperactivation or Tp53 mutation, coupled with loss of TGFβ signalling, are driving events of skin tumorigenesis.


Analysis of cell proliferation and tissue remodelling uncovers a KLF4 activity score associated with poor prognosis in colorectal cancer.

  • Silvia Halim‎ et al.
  • British journal of cancer‎
  • 2018‎

Human cancers can be classified based on gene signatures quantifying the degree of cell proliferation and tissue remodelling (PR). However, the specific factors that drive the increased tissue remodelling in tumours are not fully understood. Here we address this question using colorectal cancer as a case study.


Increased formate overflow is a hallmark of oxidative cancer.

  • Johannes Meiser‎ et al.
  • Nature communications‎
  • 2018‎

Formate overflow coupled to mitochondrial oxidative metabolism\ has been observed in cancer cell lines, but whether that takes place in the tumor microenvironment is not known. Here we report the observation of serine catabolism to formate in normal murine tissues, with a relative rate correlating with serine levels and the tissue oxidative state. Yet, serine catabolism to formate is increased in the transformed tissue of in vivo models of intestinal adenomas and mammary carcinomas. The increased serine catabolism to formate is associated with increased serum formate levels. Finally, we show that inhibition of formate production by genetic interference reduces cancer cell invasion and this phenotype can be rescued by exogenous formate. We conclude that increased formate overflow is a hallmark of oxidative cancers and that high formate levels promote invasion via a yet unknown mechanism.


Limits of aerobic metabolism in cancer cells.

  • Jorge Fernandez-de-Cossio-Diaz‎ et al.
  • Scientific reports‎
  • 2017‎

Cancer cells exhibit high rates of glycolysis and glutaminolysis. Glycolysis can provide energy and glutaminolysis can provide carbon for anaplerosis and reductive carboxylation to citrate. However, all these metabolic requirements could be in principle satisfied from glucose. Here we investigate why cancer cells do not satisfy their metabolic demands using aerobic biosynthesis from glucose. Based on the typical composition of a mammalian cell we quantify the energy demand and the OxPhos burden of cell biosynthesis from glucose. Our calculation demonstrates that aerobic growth from glucose is feasible up to a minimum doubling time that is proportional to the OxPhos burden and inversely proportional to the mitochondria OxPhos capacity. To grow faster cancer cells must activate aerobic glycolysis for energy generation and uncouple NADH generation from biosynthesis. To uncouple biosynthesis from NADH generation cancer cells can synthesize lipids from carbon sources that do not produce NADH in their catabolism, including acetate and the amino acids glutamate, glutamine, phenylalanine and tyrosine. Finally, we show that cancer cell lines have an OxPhos capacity that is insufficient to support aerobic biosynthesis from glucose. We conclude that selection for high rate of biosynthesis implies a selection for aerobic glycolysis and uncoupling biosynthesis from NADH generation.


Identification of putative calorie restriction mimetics using mammalian gene expression profiles.

  • Alexei Vazquez‎
  • Open biology‎
  • 2020‎

Obesity is a risk factor for cardiovascular diseases, diabetes and cancer. In theory, the obesity problem could be solved by the adherence to a calorie-restricted diet, but that is not generally achieved in practice. An alternative is a pharmacological approach, using compounds that trigger the same metabolic changes associated with calorie restriction. Here, I expand in the pharmacological direction by identifying compounds that induce liver gene signature profiles that mimic those induced by calorie restriction. Using gene expression profiles from mice and rat, I identify corticosteroids, PPAR agonists and some antibacterial/antifungal as candidate compounds mimicking the response to calorie restriction in the liver gene signatures.


Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium.

  • Steven E Reid‎ et al.
  • The EMBO journal‎
  • 2017‎

Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness-induced CCN1 activates β-catenin nuclear translocation and signaling and that this contributes to upregulate N-cadherin levels on the surface of the endothelium, in vitro This facilitates N-cadherin-dependent cancer cell-endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness-induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.


Immune-regulated IDO1-dependent tryptophan metabolism is source of one-carbon units for pancreatic cancer and stellate cells.

  • Alice Clare Newman‎ et al.
  • Molecular cell‎
  • 2021‎

Cancer cells adapt their metabolism to support elevated energetic and anabolic demands of proliferation. Folate-dependent one-carbon metabolism is a critical metabolic process underpinning cellular proliferation supplying carbons for the synthesis of nucleotides incorporated into DNA and RNA. Recent research has focused on the nutrients that supply one-carbons to the folate cycle, particularly serine. Tryptophan is a theoretical source of one-carbon units through metabolism by IDO1, an enzyme intensively investigated in the context of tumor immune evasion. Using in vitro and in vivo pancreatic cancer models, we show that IDO1 expression is highly context dependent, influenced by attachment-independent growth and the canonical activator IFNγ. In IDO1-expressing cancer cells, tryptophan is a bona fide one-carbon donor for purine nucleotide synthesis in vitro and in vivo. Furthermore, we show that cancer cells release tryptophan-derived formate, which can be used by pancreatic stellate cells to support purine nucleotide synthesis.


Metformin Is a Pyridoxal-5'-phosphate (PLP)-Competitive Inhibitor of SHMT2.

  • Angela Tramonti‎ et al.
  • Cancers‎
  • 2021‎

The anticancer actions of the biguanide metformin involve the functioning of the serine/glycine one-carbon metabolic network. We report that metformin directly and specifically targets the enzymatic activity of mitochondrial serine hydroxymethyltransferase (SHMT2). In vitro competitive binding assays with human recombinant SHMT1 and SHMT2 isoforms revealed that metformin preferentially inhibits SHMT2 activity by a non-catalytic mechanism. Computational docking coupled with molecular dynamics simulation predicted that metformin could occupy the cofactor pyridoxal-5'-phosphate (PLP) cavity and destabilize the formation of catalytically active SHMT2 oligomers. Differential scanning fluorimetry-based biophysical screening confirmed that metformin diminishes the capacity of PLP to promote the conversion of SHMT2 from an inactive, open state to a highly ordered, catalytically competent closed state. CRISPR/Cas9-based disruption of SHMT2, but not of SHMT1, prevented metformin from inhibiting total SHMT activity in cancer cell lines. Isotope tracing studies in SHMT1 knock-out cells confirmed that metformin decreased the SHMT2-channeled serine-to-formate flux and restricted the formate utilization in thymidylate synthesis upon overexpression of the metformin-unresponsive yeast equivalent of mitochondrial complex I (mCI). While maintaining its capacity to inhibit mitochondrial oxidative phosphorylation, metformin lost its cytotoxic and antiproliferative activity in SHMT2-null cancer cells unable to produce energy-rich NADH or FADH2 molecules from tricarboxylic acid cycle (TCA) metabolites. As currently available SHMT2 inhibitors have not yet reached the clinic, our current data establishing the structural and mechanistic bases of metformin as a small-molecule, PLP-competitive inhibitor of the SHMT2 activating oligomerization should benefit future discovery of biguanide skeleton-based novel SHMT2 inhibitors in cancer prevention and treatment.


Omics data integration suggests a potential idiopathic Parkinson's disease signature.

  • Alise Zagare‎ et al.
  • Communications biology‎
  • 2023‎

The vast majority of Parkinson's disease cases are idiopathic. Unclear etiology and multifactorial nature complicate the comprehension of disease pathogenesis. Identification of early transcriptomic and metabolic alterations consistent across different idiopathic Parkinson's disease (IPD) patients might reveal the potential basis of increased dopaminergic neuron vulnerability and primary disease mechanisms. In this study, we combine systems biology and data integration approaches to identify differences in transcriptomic and metabolic signatures between IPD patient and healthy individual-derived midbrain neural precursor cells. Characterization of gene expression and metabolic modeling reveal pyruvate, several amino acid and lipid metabolism as the most dysregulated metabolic pathways in IPD neural precursors. Furthermore, we show that IPD neural precursors endure mitochondrial metabolism impairment and a reduced total NAD pool. Accordingly, we show that treatment with NAD precursors increases ATP yield hence demonstrating a potential to rescue early IPD-associated metabolic changes.


Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing.

  • Martha M Zarou‎ et al.
  • Nature communications‎
  • 2024‎

Supporting cell proliferation through nucleotide biosynthesis is an essential requirement for cancer cells. Hence, inhibition of folate-mediated one carbon (1C) metabolism, which is required for nucleotide synthesis, has been successfully exploited in anti-cancer therapy. Here, we reveal that mitochondrial folate metabolism is upregulated in patient-derived leukaemic stem cells (LSCs). We demonstrate that inhibition of mitochondrial 1C metabolism through impairment of de novo purine synthesis has a cytostatic effect on chronic myeloid leukaemia (CML) cells. Consequently, changes in purine nucleotide levels lead to activation of AMPK signalling and suppression of mTORC1 activity. Notably, suppression of mitochondrial 1C metabolism increases expression of erythroid differentiation markers. Moreover, we find that increased differentiation occurs independently of AMPK signalling and can be reversed through reconstitution of purine levels and reactivation of mTORC1. Of clinical relevance, we identify that combination of 1C metabolism inhibition with imatinib, a frontline treatment for CML patients, decreases the number of therapy-resistant CML LSCs in a patient-derived xenograft model. Our results highlight a role for folate metabolism and purine sensing in stem cell fate decisions and leukaemogenesis.


ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation.

  • Kevin B Myant‎ et al.
  • Cell stem cell‎
  • 2013‎

The Adenomatous Polyposis Coli (APC) gene is mutated in the majority of colorectal cancers (CRCs). Loss of APC leads to constitutively active WNT signaling, hyperproliferation, and tumorigenesis. Identification of pathways that facilitate tumorigenesis after APC loss is important for therapeutic development. Here, we show that RAC1 is a critical mediator of tumorigenesis after APC loss. We find that RAC1 is required for expansion of the LGR5 intestinal stem cell (ISC) signature, progenitor hyperproliferation, and transformation. Mechanistically, RAC1-driven ROS and NF-κB signaling mediate these processes. Together, these data highlight that ROS production and NF-κB activation triggered by RAC1 are critical events in CRC initiation.


Carbon catabolite repression correlates with the maintenance of near invariant molecular crowding in proliferating E. coli cells.

  • Yi Zhou‎ et al.
  • BMC systems biology‎
  • 2013‎

Carbon catabolite repression (CCR) is critical for optimal bacterial growth, and in bacterial (and yeast) cells it leads to their selective consumption of a single substrate from a complex environment. However, the root cause(s) for the development of this regulatory mechanism is unknown. Previously, a flux balance model (FBAwMC) of Escherichia coli metabolism that takes into account the crowded intracellular milieu of the bacterial cell correctly predicted selective glucose uptake in a medium containing five different carbon sources, suggesting that CCR may be an adaptive mechanism that ensures optimal bacterial metabolic network activity for growth.


Metabotropic glutamate receptor 1 expression and its polymorphic variants associate with breast cancer phenotypes.

  • Madhura S Mehta‎ et al.
  • PloS one‎
  • 2013‎

Several epidemiological studies have suggested a link between melanoma and breast cancer. Metabotropic glutamate receptor 1 (GRM1), which is involved in many cellular processes including proliferation and differentiation, has been implicated in melanomagenesis, with ectopic expression of GRM1 causing malignant transformation of melanocytes. This study was undertaken to evaluate GRM1 expression and polymorphic variants in GRM1 for associations with breast cancer phenotypes. Three single nucleotide polymorphisms (SNPs) in GRM1 were evaluated for associations with breast cancer clinicopathologic variables. GRM1 expression was evaluated in human normal and cancerous breast tissue and for in vitro response to hormonal manipulation. Genotyping was performed on genomic DNA from over 1,000 breast cancer patients. Rs6923492 and rs362962 genotypes associated with age at diagnosis that was highly dependent upon the breast cancer molecular phenotype. The rs362962 TT genotype also associated with risk of estrogen receptor or progesterone receptor positive breast cancer. In vitro analysis showed increased GRM1 expression in breast cancer cells treated with estrogen or the combination of estrogen and progesterone, but reduced GRM1 expression with tamoxifen treatment. Evaluation of GRM1 expression in human breast tumor specimens demonstrated significant correlations between GRM1 staining with tissue type and molecular features. Furthermore, analysis of gene expression data from primary breast tumors showed that high GRM1 expression correlated with a shorter distant metastasis-free survival as compared to low GRM1 expression in tamoxifen-treated patients. Additionally, induced knockdown of GRM1 in an estrogen receptor positive breast cancer cell line correlated with reduced cell proliferation. Taken together, these findings suggest a functional role for GRM1 in breast cancer.


The neural stem cell fate determinant TRIM32 regulates complex behavioral traits.

  • Anna-Lena Hillje‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2015‎

In mammals, new neurons are generated throughout the entire lifespan in two restricted areas of the brain, the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ)-olfactory bulb (OB) system. In both regions newborn neurons display unique properties that clearly distinguish them from mature neurons. Enhanced excitability and increased synaptic plasticity enables them to add specific properties to information processing by modulating the existing local circuitry of already established mature neurons. Hippocampal neurogenesis has been suggested to play a role in spatial-navigation learning, spatial memory, and spatial pattern separation. Cumulative evidences implicate that adult-born OB neurons contribute to learning processes and odor memory. We recently demonstrated that the cell fate determinant TRIM32 is upregulated in differentiating neuroblasts of the SVZ-OB system in the adult mouse brain. The absence of TRIM32 leads to increased progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated OB neurons. Here, we present novel data from behavioral studies showing that such an enhancement of OB neurogenesis not necessarily leads to increased olfactory performance but in contrast even results in impaired olfactory capabilities. In addition, we show at the cellular level that TRIM32 protein levels increase during differentiation of neural stem cells (NSCs). At the molecular level, several metabolic intermediates that are connected to glycolysis, glycine, or cysteine metabolism are deregulated in TRIM32 knockout mice brain tissue. These metabolomics pathways are directly or indirectly linked to anxiety or depression like behavior. In summary, our study provides comprehensive data on how the impairment of neurogenesis caused by the loss of the cell fate determinant TRIM32 causes a decrease of olfactory performance as well as a deregulation of metabolomic pathways that are linked to mood disorders.


Natural variation of chronological aging in the Saccharomyces cerevisiae species reveals diet-dependent mechanisms of life span control.

  • Paul P Jung‎ et al.
  • NPJ aging and mechanisms of disease‎
  • 2018‎

Aging is a complex trait of broad scientific interest, especially because of its intrinsic link with common human diseases. Pioneering work on aging-related mechanisms has been made in Saccharomyces cerevisiae, mainly through the use of deletion collections isogenic to the S288c reference strain. In this study, using a recently published high-throughput approach, we quantified chronological life span (CLS) within a collection of 58 natural strains across seven different conditions. We observed a broad aging variability suggesting the implication of diverse genetic and environmental factors in chronological aging control. Two major Quantitative Trait Loci (QTLs) were identified within a biparental population obtained by crossing two natural isolates with contrasting aging behavior. Detection of these QTLs was dependent upon the nature and concentration of the carbon sources available for growth. In the first QTL, the RIM15 gene was identified as major regulator of aging under low glucose condition, lending further support to the importance of nutrient-sensing pathways in longevity control under calorie restriction. In the second QTL, we could show that the SER1 gene, encoding a conserved aminotransferase of the serine synthesis pathway not previously linked to aging, is causally associated with CLS regulation, especially under high glucose condition. These findings hint toward a new mechanism of life span control involving a trade-off between serine synthesis and aging, most likely through modulation of acetate and trehalose metabolism. More generally it shows that genetic linkage studies across natural strains represent a promising strategy to further unravel the molecular basis of aging.


Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis.

  • Nicole Kiweler‎ et al.
  • Nature communications‎
  • 2022‎

Metastasis is the most common cause of death in cancer patients. Canonical drugs target mainly the proliferative capacity of cancer cells, which leaves slow-proliferating, persistent cancer cells unaffected. Metabolic determinants that contribute to growth-independent functions are still poorly understood. Here we show that antifolate treatment results in an uncoupled and autarkic mitochondrial one-carbon (1C) metabolism during cytosolic 1C metabolism impairment. Interestingly, antifolate dependent growth-arrest does not correlate with decreased migration capacity. Therefore, using methotrexate as a tool compound allows us to disentangle proliferation and migration to profile the metabolic phenotype of migrating cells. We observe that increased serine de novo synthesis (SSP) supports mitochondrial serine catabolism and inhibition of SSP using the competitive PHGDH-inhibitor BI-4916 reduces cancer cell migration. Furthermore, we show that sole inhibition of mitochondrial serine catabolism does not affect primary breast tumor growth but strongly inhibits pulmonary metastasis. We conclude that mitochondrial 1C metabolism, despite being dispensable for proliferative capacities, confers an advantage to cancer cells by supporting their motility potential.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: