Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36 papers

A single immunization with recombinant rabies virus (ERAG3G) confers complete protection against rabies in mice.

  • Dong-Kun Yang‎ et al.
  • Clinical and experimental vaccine research‎
  • 2014‎

New alternative bait rabies vaccines applicable to pet dogs and wild animals are needed to eradicate rabies in Korea. In this study, recombinant rabies virus, ERAG3G strain was constructed using reverse genetic system and the safety, efficacy and immunogenicity of the ERAG3G strain was evaluated in mice and dogs.


Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV.

  • Kumari G Lokugamage‎ et al.
  • Vaccine‎
  • 2008‎

We tested the efficacy of coronavirus-like particles (VLPs) for protecting mice against severe acute respiratory syndrome coronavirus (SCoV) infection. Coexpression of SCoV S protein and E, M and N proteins of mouse hepatitis virus in 293T or CHO cells resulted in the efficient production of chimeric VLPs carrying SCoV S protein. Balb/c mice inoculated with a mixture of chimeric VLPs and alum twice at an interval of four weeks were protected from SCoV challenge, as indicated by the absence of infectious virus in the lungs. The same groups of mice had high levels of SCoV-specific neutralizing antibodies, while mice in the negative control groups, which were not immunized with chimeric VLPs, failed to manifest neutralizing antibodies, suggesting that SCoV-specific neutralizing antibodies are important for the suppression of viral replication within the lungs. Despite some differences in the cellular composition of inflammatory infiltrates, we did not observe any overt lung pathology in the chimeric-VLP-treated mice, when compared to the negative control mice. Our results show that chimeric VLP can be an effective vaccine strategy against SCoV infection.


Vesiculopolins, a New Class of Anti-Vesiculoviral Compounds, Inhibit Transcription Initiation of Vesiculoviruses.

  • Minako Ogino‎ et al.
  • Viruses‎
  • 2019‎

Vesicular stomatitis virus (VSV) represents a promising platform for developing oncolytic viruses, as well as vaccines against significant human pathogens. To safely control VSV infection in humans, small-molecule drugs that selectively inhibit VSV infection may be needed. Here, using a cell-based high-throughput screening assay followed by an in vitro transcription assay, compounds with a 7-hydroxy-6-methyl-3,4-dihydroquinolin-2(1H)-one structure and an aromatic group at position 4 (named vesiculopolins, VPIs) were identified as VSV RNA polymerase inhibitors. The most effective compound, VPI A, inhibited VSV-induced cytopathic effects and in vitro mRNA synthesis with micromolar to submicromolar 50% inhibitory concentrations. VPI A was found to inhibit terminal de novo initiation rather than elongation for leader RNA synthesis, but not mRNA capping, with the VSV L protein, suggesting that VPI A is targeted to the polymerase domain in the L protein. VPI A inhibited transcription of Chandipura virus, but not of human parainfluenza virus 3, suggesting that it specifically acts on vesiculoviral L proteins. These results suggest that VPIs may serve not only as molecular probes to elucidate the mechanisms of transcription of vesiculoviruses, but also as lead compounds to develop antiviral drugs against vesiculoviruses and other related rhabdoviruses.


Kaempferol Suppresses the Activation of Mast Cells by Modulating the Expression of FcεRI and SHIP1.

  • Kazuki Nagata‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

In the present study, we evaluated the effects of kaempferol on bone marrow-derived mast cells (BMMCs). Kaempferol treatment significantly and dose-dependently inhibited IgE-induced degranulation, and cytokine production of BMMCs under the condition that cell viability was maintained. Kaempferol downregulated the surface expression levels of FcεRI on BMMCs, but the mRNA levels of FcεRIα, β, and γ-chains were not changed by kaempferol treatment. Furthermore, the kaempferol-mediated downregulation of surface FcεRI on BMMCs was still observed when protein synthesis or protein transporter was inhibited. We also found that kaempferol inhibited both LPS- and IL-33-induced IL-6 production from BMMCs, without affecting the expression levels of their receptors, TLR4 and ST2. Although kaempferol treatment increased the protein amount of NF-E2-related factor 2 (NRF2)-a master transcription factor of antioxidant stress-in BMMCs, the inhibition of NRF2 did not alter the suppressive effect of kaempferol on degranulation. Finally, we found that kaempferol treatment increased the levels of mRNA and protein of a phosphatase SHIP1 in BMMCs. The kaempferol-induced upregulation of SHIP1 was also observed in peritoneal MCs. The knockdown of SHIP1 by siRNA significantly enhanced IgE-induced degranulation of BMMCs. A Western blotting analysis showed that IgE-induced phosphorylation of PLCγ was suppressed in kaempferol-treated BMMCs. These results indicate that kaempferol inhibited the IgE-induced activation of BMMCs by downregulating FcεRI and upregulating SHIP1, and the SHIP1 increase is involved in the suppression of various signaling-mediated stimulations of BMMCs, such as those associated with TLR4 and ST2.


Decreased N-TAF1 expression in X-linked dystonia-parkinsonism patient-specific neural stem cells.

  • Naoto Ito‎ et al.
  • Disease models & mechanisms‎
  • 2016‎

X-linked dystonia-parkinsonism (XDP) is a hereditary neurodegenerative disorder involving a progressive loss of striatal medium spiny neurons. The mechanisms underlying neurodegeneration are not known, in part because there have been few cellular models available for studying the disease. The XDP haplotype consists of multiple sequence variations in a region of the X chromosome containingTAF1, a large gene with at least 38 exons, and a multiple transcript system (MTS) composed of five unconventional exons. A previous study identified an XDP-specific insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon in intron 32 ofTAF1, as well as a neural-specific TAF1 isoform, N-TAF1, which showed decreased expression in post-mortem XDP brain compared with control tissue. Here, we generated XDP patient and control fibroblasts and induced pluripotent stem cells (iPSCs) in order to further probe cellular defects associated with this disease. As initial validation of the model, we compared expression ofTAF1and MTS transcripts in XDP versus control fibroblasts and iPSC-derived neural stem cells (NSCs). Compared with control cells, XDP fibroblasts exhibited decreased expression ofTAF1transcript fragments derived from exons 32-36, a region spanning the SVA insertion site. N-TAF1, which incorporates an alternative exon (exon 34'), was not expressed in fibroblasts, but was detectable in iPSC-differentiated NSCs at levels that were ∼threefold lower in XDP cells than in controls. These results support the previous findings that N-TAF1 expression is impaired in XDP, but additionally indicate that this aberrant transcription might occur in neural cells at relatively early stages of development that precede neurodegeneration.


Torsin mediates primary envelopment of large ribonucleoprotein granules at the nuclear envelope.

  • Vahbiz Jokhi‎ et al.
  • Cell reports‎
  • 2013‎

A previously unrecognized mechanism through which large ribonucleoprotein (megaRNP) granules exit the nucleus is by budding through the nuclear envelope (NE). This mechanism is akin to the nuclear egress of herpes-type viruses and is essential for proper synapse development. However, the molecular machinery required to remodel the NE during this process is unknown. Here, we identify Torsin, an AAA-ATPase that in humans is linked to dystonia, as a major mediator of primary megaRNP envelopment during NE budding. In torsin mutants, megaRNPs accumulate within the perinuclear space, and the messenger RNAs contained within fail to reach synaptic sites, preventing normal synaptic protein synthesis and thus proper synaptic bouton development. These studies begin to establish the cellular machinery underlying the exit of megaRNPs via budding, offer an explanation for the "nuclear blebbing" phenotype found in dystonia models, and provide an important link between Torsin and the synaptic phenotypes observed in dystonia.


WNT/β-Catenin Pathway and Epigenetic Mechanisms Regulate the Pitt-Hopkins Syndrome and Schizophrenia Risk Gene TCF4.

  • Krista M Hennig‎ et al.
  • Molecular neuropsychiatry‎
  • 2017‎

Genetic variation within the transcription factor TCF4 locus can cause the intellectual disability and developmental disorder Pitt-Hopkins syndrome (PTHS), whereas single-nucleotide polymorphisms within noncoding regions are associated with schizophrenia. These genetic findings position TCF4 as a link between transcription and cognition; however, the neurobiology of TCF4 remains poorly understood. Here, we quantitated multiple distinct TCF4 transcript levels in human induced pluripotent stem cell-derived neural progenitors and differentiated neurons, and PTHS patient fibroblasts. We identify two classes of pharmacological treatments that regulate TCF4 expression: WNT pathway activation and inhibition of class I histone deacetylases. In PTHS fibroblasts, both of these perturbations upregulate a subset of TCF4 transcripts. Finally, using chromatin immunoprecipitation sequencing in conjunction with genome-wide transcriptome analysis, we identified TCF4 target genes that may mediate the effect of TCF4 loss on neuroplasticity. Our studies identify new pharmacological assays, tools, and targets for the development of therapeutics for cognitive disorders.


RECQ1 plays a distinct role in cellular response to oxidative DNA damage.

  • Sudha Sharma‎ et al.
  • DNA repair‎
  • 2012‎

RECQ1 is the most abundant RecQ homolog in humans but its functions have remained mostly elusive. Biochemically, RECQ1 displays distinct substrate specificities from WRN and BLM, indicating that these RecQ helicases likely perform non-overlapping functions. Our earlier work demonstrated that RECQ1-deficient cells display spontaneous genomic instability. We have obtained key evidence suggesting a unique role of RECQ1 in repair of oxidative DNA damage. We show that similar to WRN, RECQ1 associates with PARP-1 in nuclear extracts and exhibits direct protein interaction in vitro. Deficiency in WRN or BLM helicases have been shown to result in reduced homologous recombination and hyperactivation of PARP under basal condition. However, RECQ1-deficiency did not lead to PARP activation in undamaged cells and nor did it result in reduction in homologous recombination repair. In stark contrast to what is seen in WRN-deficiency, RECQ1-deficient cells hyperactivate PARP in a specific response to H₂O₂treatment. RECQ1-deficient cells are more sensitive to oxidative DNA damage and exposure to oxidative stress results in a rapid and reversible recruitment of RECQ1 to chromatin. Chromatin localization of RECQ1 precedes WRN helicase, which has been shown to function in oxidative DNA damage repair. However, oxidative DNA damage-induced chromatin recruitment of these RecQ helicases is independent of PARP activity. As other RecQ helicases are known to interact with PARP-1, this study provides a paradigm to delineate specialized and redundant functions of RecQ homologs in repair of oxidative DNA damage.


Dtorsin, the Drosophila ortholog of the early-onset dystonia TOR1A (DYT1), plays a novel role in dopamine metabolism.

  • Noriko Wakabayashi-Ito‎ et al.
  • PloS one‎
  • 2011‎

Dystonia represents the third most common movement disorder in humans. At least 15 genetic loci (DYT1-15) have been identified and some of these genes have been cloned. TOR1A (formally DYT1), the gene responsible for the most common primary hereditary dystonia, encodes torsinA, an AAA ATPase family protein. However, the function of torsinA has yet to be fully understood. Here, we have generated and characterized a complete loss-of-function mutant for dtorsin, the only Drosophila ortholog of TOR1A. Null mutation of the X-linked dtorsin was semi-lethal with most male flies dying by the pre-pupal stage and the few surviving adults being sterile and slow moving, with reduced cuticle pigmentation and thin, short bristles. Third instar male larvae exhibited locomotion defects that were rescued by feeding dopamine. Moreover, biochemical analysis revealed that the brains of third instar larvae and adults heterozygous for the loss-of-function dtorsin mutation had significantly reduced dopamine levels. The dtorsin mutant showed a very strong genetic interaction with Pu (Punch: GTP cyclohydrolase), the ortholog of the human gene underlying DYT14 dystonia. Biochemical analyses revealed a severe reduction of GTP cyclohydrolase protein and activity, suggesting that dtorsin plays a novel role in dopamine metabolism as a positive-regulator of GTP cyclohydrolase protein. This dtorsin mutant line will be valuable for understanding this relationship and potentially other novel torsin functions that could play a role in human dystonia.


Molecular epidemiology of rabies in Indonesia.

  • Heru Susetya‎ et al.
  • Virus research‎
  • 2008‎

In order to clarify the genetic relationships and dynamics of rabies viruses that are epidemic in Indonesia, we determined and analyzed 1307 nucleotides of nucleoprotein genes of 34 rabies field isolates collected from Sumatra, Java, Kalimantan, Sulawesi and Flores islands. Results of phylogenetic analysis indicated that rabies isolates in Indonesia formed one cluster, were of Asian lineage, and were closely related to a rabies isolate in China rather than to rabies isolates in Thailand, India or Sri Lanka. Rabies isolates in Indonesia were divided into three phylogroups (ID1, ID2 and ID3) that included seven lineages. There was a correlation between phylogroup and geographical distribution of the isolates. Isolates in four lineages (SC1, SC2, SC3 and ST) of the ID1 phylogroup were mainly present in Sumatra. Isolates in the ST lineage were distributed widely in Sumatra, while isolates in the SC1, SC2 and SC3 lineages were limited to central Sumatra. ID2 and ID3 phylogroups included one lineage (JA) and two lineages (KS and SF), respectively. Results of phylogenetic analysis and historical background suggest that rabies viruses in China might have been transferred to Indonesia and spread to each island due to human activities.


Deactivation of the antiviral state by rabies virus through targeting and accumulation of persistently phosphorylated STAT1.

  • Gayathri Manokaran‎ et al.
  • PLoS pathogens‎
  • 2022‎

Antagonism of the interferon (IFN)-mediated antiviral state is critical to infection by rabies virus (RABV) and other viruses, and involves interference in the IFN induction and signaling pathways in infected cells, as well as deactivation of the antiviral state in cells previously activated by IFN. The latter is required for viral spread in the host, but the precise mechanisms involved and roles in RABV pathogenesis are poorly defined. Here, we examined the capacity of attenuated and pathogenic strains of RABV that differ only in the IFN-antagonist P protein to overcome an established antiviral state. Importantly, P protein selectively targets IFN-activated phosphorylated STAT1 (pY-STAT1), providing a molecular tool to elucidate specific roles of pY-STAT1. We find that the extended antiviral state is dependent on a low level of pY-STAT1 that appears to persist at a steady state through ongoing phosphorylation/dephosphorylation cycles, following an initial IFN-induced peak. P protein of pathogenic RABV binds and progressively accumulates pY-STAT1 in inactive cytoplasmic complexes, enabling recovery of efficient viral replication over time. Thus, P protein-pY-STAT1 interaction contributes to 'disarming' of the antiviral state. P protein of the attenuated RABV is defective in this respect, such that replication remains suppressed over extended periods in cells pre-activated by IFN. These data provide new insights into the nature of the antiviral state, indicating key roles for residual pY-STAT1 signaling. They also elucidate mechanisms of viral deactivation of antiviral responses, including specialized functions of P protein in selective targeting and accumulation of pY-STAT1.


Quantitative Analysis of the Microtubule Interaction of Rabies Virus P3 Protein: Roles in Immune Evasion and Pathogenesis.

  • Aaron Brice‎ et al.
  • Scientific reports‎
  • 2016‎

Although microtubules (MTs) are known to have important roles in intracellular transport of many viruses, a number of reports suggest that specific viral MT-associated proteins (MAPs) target MTs to subvert distinct MT-dependent cellular processes. The precise functional importance of these interactions and their roles in pathogenesis, however, remain largely unresolved. To assess the association with disease of the rabies virus (RABV) MAP, P3, we quantitatively compared the phenotypes of P3 from a pathogenic RABV strain, Nishigahara (Ni) and a non-pathogenic Ni-derivative strain, Ni-CE. Using confocal/live-cell imaging and dSTORM super-resolution microscopy to quantify protein interactions with the MT network and with individual MT filaments, we found that the interaction by Ni-CE-P3 is significantly impaired compared with Ni-P3. This correlated with an impaired capacity to effect association of the transcription factor STAT1 with MTs and to antagonize interferon (IFN)/STAT1-dependent antiviral signaling. Importantly, we identified a single mutation in Ni-CE-P3 that is sufficient to inhibit MT-association and IFN-antagonist function of Ni-P3, and showed that this mutation alone attenuates the pathogenicity of RABV. These data provide evidence that the viral protein-MT interface has important roles in pathogenesis, suggesting that this interface could provide targets for vaccine/antiviral drug development.


Structural Elucidation of Viral Antagonism of Innate Immunity at the STAT1 Interface.

  • Md Alamgir Hossain‎ et al.
  • Cell reports‎
  • 2019‎

To evade immunity, many viruses express interferon antagonists that target STAT transcription factors as a major component of pathogenesis. Because of a lack of direct structural data, these interfaces are poorly understood. We report the structural analysis of full-length STAT1 binding to an interferon antagonist of a human pathogenic virus. The interface revealed by transferred cross-saturation NMR is complex, involving multiple regions in both the viral and cellular proteins. Molecular mapping analysis, combined with biophysical characterization and in vitro/in vivo functional assays, indicates that the interface is significant in disease caused by a pathogenic field-strain lyssavirus, with critical roles for contacts between the STAT1 coiled-coil/DNA-binding domains and specific regions within the viral protein. These data elucidate the potentially complex nature of IFN antagonist/STAT interactions, and the spatial relationship of protein interfaces that mediate immune evasion and replication, providing insight into how viruses can regulate these essential functions via single multifunctional proteins.


Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.

  • Ryan L Collins‎ et al.
  • Genome biology‎
  • 2017‎

Structural variation (SV) influences genome organization and contributes to human disease. However, the complete mutational spectrum of SV has not been routinely captured in disease association studies.


Genetic and Phenotypic Characterization of a Rabies Virus Strain Isolated from a Dog in Tokyo, Japan in the 1940s.

  • Tatsuki Takahashi‎ et al.
  • Viruses‎
  • 2020‎

The rabies virus strain Komatsugawa (Koma), which was isolated from a dog in Tokyo in the 1940s before eradication of rabies in Japan in 1957, is known as the only existent Japanese field strain (street strain). Although this strain potentially provides a useful model to study rabies pathogenesis, little is known about its genetic and phenotypic properties. Notably, this strain underwent serial passages in rodents after isolation, indicating the possibility that it may have lost biological characteristics as a street strain. In this study, to evaluate the utility of the Koma strain for studying rabies pathogenesis, we examined the genetic properties and in vitro and in vivo phenotypes. Genome-wide genetic analyses showed that, consistent with previous findings from partial sequence analyses, the Koma strain is closely related to a Russian street strain within the Arctic-related phylogenetic clade. Phenotypic examinations in vitro revealed that the Koma strain and the representative street strains are less neurotropic than the laboratory strains. Examination by using a mouse model demonstrated that the Koma strain and the street strains are more neuroinvasive than the laboratory strains. These findings indicate that the Koma strain retains phenotypes similar to those of street strains, and is therefore useful for studying rabies pathogenesis.


Definition of the immune evasion-replication interface of rabies virus P protein.

  • Jingyu Zhan‎ et al.
  • PLoS pathogens‎
  • 2021‎

Rabies virus phosphoprotein (P protein) is a multifunctional protein that plays key roles in replication as the polymerase cofactor that binds to the complex of viral genomic RNA and the nucleoprotein (N protein), and in evading the innate immune response by binding to STAT transcription factors. These interactions are mediated by the C-terminal domain of P (PCTD). The colocation of these binding sites in the small globular PCTD raises the question of how these interactions underlying replication and immune evasion, central to viral infection, are coordinated and, potentially, coregulated. While direct data on the binding interface of the PCTD for STAT1 is available, the lack of direct structural data on the sites that bind N protein limits our understanding of this interaction hub. The PCTD was proposed to bind via two sites to a flexible loop of N protein (Npep) that is not visible in crystal structures, but no direct analysis of this interaction has been reported. Here we use Nuclear Magnetic Resonance, and molecular modelling to show N protein residues, Leu381, Asp383, Asp384 and phosphor-Ser389, are likely to bind to a 'positive patch' of the PCTD formed by Lys211, Lys214 and Arg260. Furthermore, in contrast to previous predictions we identify a single site of interaction on the PCTD by this Npep. Intriguingly, this site is proximal to the defined STAT1 binding site that includes Ile201 to Phe209. However, cell-based assays indicate that STAT1 and N protein do not compete for P protein. Thus, it appears that interactions critical to replication and immune evasion can occur simultaneously with the same molecules of P protein so that the binding of P protein to activated STAT1 can potentially occur without interrupting interactions involved in replication. These data suggest that replication complexes might be directly involved in STAT1 antagonism.


Glu333 in rabies virus glycoprotein is involved in virus attenuation through astrocyte infection and interferon responses.

  • Yukari Itakura‎ et al.
  • iScience‎
  • 2022‎

The amino acid residue at position 333 of the rabies virus (RABV) glycoprotein (G333) is a major determinant of RABV pathogenicity. Virulent RABV strains possess Arg333, whereas the attenuated strain HEP-Flury (HEP) possesses Glu333. To investigate the potential attenuation mechanism dependent on a single amino acid at G333, comparative analysis was performed between HEP and HEP333R mutant with Arg333. We examined their respective tropism for astrocytes and the subsequent immune responses in astrocytes. Virus replication and subsequent interferon (IFN) responses in astrocytes infected with HEP were increased compared with HEP333R both in vitro and in vivo. Furthermore, involvement of IFN in the avirulency of HEP was demonstrated in IFN-receptor knockout mice. These results indicate that Glu333 contributes to RABV attenuation by determining the ability of the virus to infect astrocytes and stimulate subsequent IFN responses.


Morphogenesis of Bullet-Shaped Rabies Virus Particles Regulated by TSG101.

  • Yukari Itakura‎ et al.
  • Journal of virology‎
  • 2023‎

Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host endosomal sorting complex required for transport (ESCRT) machinery, which contributes to the physiological functions of membrane modulation and abscission. Bullet-shaped viral particles are unique morphological characteristics of rhabdoviruses; however, the involvement of host factors in rhabdovirus infection and, specifically, the molecular mechanisms underlying virion formation are not fully understood. In the present study, we used a small interfering RNA (siRNA) screening approach and found that the ESCRT-I component TSG101 contributes to the propagation of rabies virus (RABV). We demonstrated that the matrix protein (M) of RABV interacts with TSG101 via the late domain containing the PY and YL motifs, which are conserved in various viral proteins. Loss of the YL motif in the RABV M or the downregulation of host TSG101 expression resulted in the intracellular aggregation of viral proteins and abnormal virus particle formation, indicating a defect in the RABV assembly and budding processes. These results indicate that the interaction of the RABV M and TSG101 is pivotal for not only the efficient budding of progeny RABV from infected cells but also for the bullet-shaped virion morphology. IMPORTANCE Enveloped viruses bud from cells with the host lipid bilayer. Generally, the membrane modulation and abscission are mediated by host ESCRT complexes. Some enveloped viruses utilize their late (L-) domain to interact with ESCRTs, which promotes viral budding. Rhabdoviruses form characteristic bullet-shaped enveloped virions, but the underlying molecular mechanisms involved remain elusive. Here, we showed that TSG101, one of the ESCRT components, supports rabies virus (RABV) budding and proliferation. TSG101 interacted with RABV matrix protein via the L-domain, and the absence of this interaction resulted in intracellular virion accumulation and distortion of the morphology of progeny virions. Our study reveals that virion formation of RABV is highly regulated by TSG101 and the virus matrix protein.


Genome Sequences of Rotavirus A Strains Ty-1 and Ty-3, Isolated from Turkeys in Ireland in 1979.

  • Yuji Fujii‎ et al.
  • Genome announcements‎
  • 2016‎

To obtain complete genome sequences of turkey rotavirus A strains Ty-1 and Ty-3, we sequenced the gene segments that had not been decoded previously. The genotype constellations of the respective strains were determined to be G17-P[38]-I4-R4-C4-M4-A16-N4-T4-E4-H4 and G7-P[35]-I4-R4-C4-M4-A16-N4-T4-E11-H14. Notably, their VP4 and NSP5 genes were classified into novel genotypes.


Disease onset in X-linked dystonia-parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1.

  • D Cristopher Bragg‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2017‎

X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease associated with an antisense insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1 This unique insertion coincides with six additional noncoding sequence changes in TAF1, the gene that encodes TATA-binding protein-associated factor-1, which appear to be inherited together as an identical haplotype in all reported cases. Here we examined the sequence of this SVA in XDP patients (n = 140) and detected polymorphic variation in the length of a hexanucleotide repeat domain, (CCCTCT)n The number of repeats in these cases ranged from 35 to 52 and showed a highly significant inverse correlation with age at disease onset. Because other SVAs exhibit intrinsic promoter activity that depends in part on the hexameric domain, we assayed the transcriptional regulatory effects of varying hexameric lengths found in the unique XDP SVA retrotransposon using luciferase reporter constructs. When inserted sense or antisense to the luciferase reading frame, the XDP variants repressed or enhanced transcription, respectively, to an extent that appeared to vary with length of the hexamer. Further in silico analysis of this SVA sequence revealed multiple motifs predicted to form G-quadruplexes, with the greatest potential detected for the hexameric repeat domain. These data directly link sequence variation within the XDP-specific SVA sequence to phenotypic variability in clinical disease manifestation and provide insight into potential mechanisms by which this intronic retroelement may induce transcriptional interference in TAF1 expression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: