Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Machine Learning Analyses on Data including Essential Oil Chemical Composition and In Vitro Experimental Antibiofilm Activities against Staphylococcus Species.

  • Alexandros Patsilinakos‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Biofilm resistance to antimicrobials is a complex phenomenon, driven not only by genetic mutation induced resistance, but also by means of increased microbial cell density that supports horizontal gene transfer across cells. The prevention of biofilm formation and the treatment of existing biofilms is currently a difficult challenge; therefore, the discovery of new multi-targeted or combinatorial therapies is growing. The development of anti-biofilm agents is considered of major interest and represents a key strategy as non-biocidal molecules are highly valuable to avoid the rapid appearance of escape mutants. Among bacteria, staphylococci are predominant causes of biofilm-associated infections. Staphylococci, especially Staphylococcus aureus (S. aureus) is an extraordinarily versatile pathogen that can survive in hostile environmental conditions, colonize mucous membranes and skin, and can cause severe, non-purulent, toxin-mediated diseases or invasive pyogenic infections in humans. Staphylococcus epidermidis (S. epidermidis) has also emerged as an important opportunistic pathogen in infections associated with medical devices (such as urinary and intravascular catheters, orthopaedic implants, etc.), causing approximately from 30% to 43% of joint prosthesis infections. The scientific community is continuously looking for new agents endowed of anti-biofilm capabilities to fight S. aureus and S epidermidis infections. Interestingly, several reports indicated in vitro efficacy of non-biocidal essential oils (EOs) as promising treatment to reduce bacterial biofilm production and prevent the inducing of drug resistance. In this report were analyzed 89 EOs with the objective of investigating their ability to modulate bacterial biofilm production of different S. aureus and S. epidermidis strains. Results showed the assayed EOs to modulated the biofilm production with unpredictable results for each strain. In particular, many EOs acted mainly as biofilm inhibitors in the case of S. epidermidis strains, while for S. aureus strains, EOs induced either no effect or stimulate biofilm production. In order to elucidate the obtained experimental results, machine learning (ML) algorithms were applied to the EOs' chemical compositions and the determined associated anti-biofilm potencies. Statistically robust ML models were developed, and their analysis in term of feature importance and partial dependence plots led to indicating those chemical components mainly responsible for biofilm production, inhibition or stimulation for each studied strain, respectively.


Exploring the first Rimonabant analog-opioid peptide hybrid compound, as bivalent ligand for CB1 and opioid receptors.

  • Adriano Mollica‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2017‎

Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.


Decreasing acidity in a series of aldose reductase inhibitors: 2-Fluoro-4-(1H-pyrrol-1-yl)phenol as a scaffold for improved membrane permeation.

  • Maria Chatzopoulou‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2014‎

Targeting long-term diabetic complications, as well as inflammatory pathologies, aldose reductase inhibitors (ARIs) have been gaining attention over the years. In the present work, in order to address the poor membrane permeation of previously reported ARIs, derivatives of N-phenylpyrrole, bearing groups with putative pKa≥7.4, were synthesized and evaluated for aldose reductase inhibitory activity. The 2-fluorophenol group proved the most promising moiety, and further modifications were explored. The most active compound (31), identified as a submicromolar inhibitor (IC50=0.443μM), was also selective against the homologous enzyme aldehyde reductase. Cross-docking revealed that 31 displays a peculiar interaction network that may be responsible for high affinity. Physicochemical profiling of 31 showed a pKa of 7.64, rendering it less than 50% ionized in the physiological pH range, with potentially favorable membrane permeation. The latter was supported from the successful inhibition of sorbitol formation in rat lenses and the ability to permeate rat jejunum.


Targeting the anti-apoptotic Bcl-2 family proteins: machine learning virtual screening and biological evaluation of new small molecules.

  • Elisabetta Valentini‎ et al.
  • Theranostics‎
  • 2022‎

Bcl-2 family anti-apoptotic proteins are overexpressed in several hematological and solid tumors, and contribute to tumor formation, progression, and resistance to therapy. They represent a promising therapeutic avenue to explore for cancer treatment. Venetoclax, a Bcl-2 inhibitor is currently used for hematological malignancies or is undergoing clinical trials for either hematological or solid tumors. Despite these progresses, ongoing efforts are focusing on the identification and development of new molecules targeting Bcl-2 protein and/or other family members. Methods: Machine learning guided virtual screening followed by surface plasmon resonance, molecular docking and pharmacokinetic analyses were performed to identify new inhibitors of anti-apoptotic members of Bcl-2 family and their pharmacokinetic profile. The sensitivity of cancer cells from different origin to the identified compounds was evaluated both in in vitro (cell survival, apoptosis, autophagy) and in vivo (tumor growth in nude mice) preclinical models. Results: IS20 and IS21 were identified as potential new lead compounds able to bind Bcl-2, Bcl-xL and Mcl-1 recombinant proteins. Molecular docking investigation indicated IS20 and IS21 could bind into the Beclin-1 BH3 binding site of wild type Bcl-2, Bcl-xL and Mcl-1 proteins. In particular, although the IS21 docked conformation did not show a unique binding mode, it clearly showed its ability in flexibly adapting to either BH3 binding sites. Moreover, both IS20 and IS21 reduced cell viability, clonogenic ability and tumor sphere formation, and induced apoptosis in leukemic, melanoma and lung cancer cells. Autophagosome formation and maturation assays demonstrated induction of autophagic flux after treatment with IS20 or IS21. Experiments with z-VAD-fmk, a pan-caspase inhibitor, and chloroquine, a late-stage autophagy inhibitor, demonstrated the ability of the two compounds to promote apoptosis by autophagy. IS21 also reduced in vivo tumor growth of both human leukemia and melanoma models. Conclusion: Virtual screening coupled with in vitro and in vivo experimental data led to the identification of two new promising inhibitors of anti-apoptotic proteins with good efficacy in the binding to recombinant Bcl-2, Bcl-xL and Mcl-1 proteins, and against different tumor histotypes.


Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells.

  • Clemens Zwergel‎ et al.
  • European journal of medicinal chemistry‎
  • 2017‎

Cell division cycle phosphatases CDC25 A, B and C are involved in modulating cell cycle processes and are found overexpressed in a large panel of cancer typology. Here, we describe the development of two novel quinone-polycycle series of CDC25A and C inhibitors on the one hand 1a-k, coumarin-based, and on the other 2a-g, quinolinone-based, which inhibit either enzymes up to a sub-micro molar level and at single-digit micro molar concentrations, respectively. When tested in six different cancer cell lines, compound 2c displayed the highest efficacy to arrest cell viability, showing in almost all cell lines sub-micro molar IC50 values, a profile even better than the reference compound NCS95397. To investigate the putative binding mode of the inhibitors and to develop quantitative structure-activity relationships, molecular docking and 3-D QSAR studies were also carried out. Four selected inhibitors, 1a, 1d, 2a and 2c have been also tested in A431 cancer cells; among them, compound 2c was the most potent one leading to cell proliferation arrest and decreased CDC25C protein levels together with its splicing variant. Compound 2c displayed increased phosphorylation levels of histone H3, induction of PARP and caspase 3 cleavage, highlighting its contribution to cell death through pro-apoptotic effects.


Shmt2: A Stat3 Signaling New Player in Prostate Cancer Energy Metabolism.

  • Ilaria Marrocco‎ et al.
  • Cells‎
  • 2019‎

Prostate cancer (PCa) is a multifactorial disease characterized by the aberrant activity of different regulatory pathways. STAT3 protein mediates some of these pathways and its activation is implicated in the modulation of several metabolic enzymes. A bioinformatic analysis indicated a STAT3 binding site in the upstream region of SHMT2 gene. We demonstrated that in LNCaP, PCa cells' SHMT2 expression is upregulated by the JAK2/STAT3 canonical pathway upon IL-6 stimulation. Activation of SHTM2 leads to a decrease in serine levels, pushing PKM2 towards the nuclear compartment where it can activate STAT3 in a non-canonical fashion that in turn promotes a transient shift toward anaerobic metabolism. These results were also confirmed on FFPE prostate tissue sections at different Gleason scores. STAT3/SHMT2/PKM2 loop in LNCaP cells can modulate a metabolic shift in response to inflammation at early stages of cancer progression, whereas a non-canonical STAT3 activation involving the STAT3/HIF-1α/PKM2 loop is responsible for the maintenance of Warburg effect distinctive of more aggressive PCa cells. Chronic inflammation might thus prime the transition of PCa cells towards more advanced stages, and SHMT2 could represent a missing factor to further understand the molecular mechanisms responsible for the transition of prostate cancer towards a more aggressive phenotype.


Novel Pyrimidine Derivatives as Antioxidant and Anticancer Agents: Design, Synthesis and Molecular Modeling Studies.

  • Malama Myriagkou‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

The heterocyclic ring system of pyrido [2,3-d]pyrimidines is a privileged scaffold in medicinal chemistry, possessing several biological activities. The synthesis of the pyrimidine derivatives was performed via the condensation of a suitable α,β-unsaturated ketone with 4-amino-6-hydroxy-2-mercaptopyrimidine monohydrate in glacial acetic acid. Chalcones were synthesized, as starting materials, via the Claisen-Schmidt condensation of an appropriately substituted ketone and an appropriately substituted aldehyde in the presence of aqueous KOH 40% w/v in ethanol. All the synthesized compounds were characterized using IR, 1H-NMR, 13C-NMR, LC-MS and elemental analysis. The synthesized compounds were evaluated for their antioxidant (DPPH assay), anti-lipid peroxidation (AAPH), anti-LOX activities and ability to interact with glutathione. The compounds do not interact significantly with DPPH but strongly inhibit lipid peroxidation. Pyrimidine derivatives 2a (IC50 = 42 μΜ), 2f (IC50 = 47.5 μΜ) and chalcone 1g (IC50 = 17 μM) were the most potent lipoxygenase inhibitors. All the tested compounds were found to interact with glutathione, apart from 1h. Cell viability and cytotoxicity assays were performed with the HaCaT and A549 cell lines, respectively. In the MTT assay towards the HaCaT cell line, none of the compounds presented viability at 100 μM. On the contrary, in the MTT assay towards the A549 cell line, the tested compounds showed strong cytotoxicity at 100 μM, with derivative 2d presenting the strongest cytotoxic effects at the concentration of 50 μΜ.


Preparation of bivalent agonists for targeting the mu opioid and cannabinoid receptors.

  • Szabolcs Dvorácskó‎ et al.
  • European journal of medicinal chemistry‎
  • 2019‎

In order to obtain novel pharmacological tools and to investigate a multitargeting analgesic strategy, the CB1 and CB2 cannabinoid receptor agonist JWH-018 was conjugated with the opiate analgesic oxycodone or with an enkephalin related tetrapeptide. The opioid and cannabinoid pharmacophores were coupled via spacers of different length and chemical structure. In vitro radioligand binding experiments confirmed that the resulting bivalent compounds bound both to the opioid and to the cannabinoid receptors with moderate to high affinity. The highest affinity bivalent derivatives 11 and 19 exhibited agonist properties in [35S]GTPγS binding assays. These compounds activated MOR and CB (11 mainly CB2, whereas 19 mainly CB1) receptor-mediated signaling, as it was revealed by experiments using receptor specific antagonists. In rats both 11 and 19 exhibited antiallodynic effect similar to the parent drugs in 20 μg dose at spinal level. These results support the strategy of multitargeting G-protein coupled receptors to develop lead compounds with antinociceptive properties.


Synthesis, biological evaluation and quantitative structure-active relationships of 1,3-thiazolidin-4-one derivatives. A promising chemical scaffold endowed with high antifungal potency and low cytotoxicity.

  • Simone Carradori‎ et al.
  • European journal of medicinal chemistry‎
  • 2017‎

With reference to recent studies reporting on the various biological properties of the thiazolidinone scaffold, we synthesized more than a hundred compounds characterized by a 1,3-thiazolidin-4-one nucleus derivatised at the C2 with a hydrazine bridge linked to (cyclo)aliphatic or hetero(aryl) moieties, and their N-benzylated derivatives. These molecules were assayed as potential anti-Candida agents and they were shown to possess comparable, and in some cases higher biological activity than well-established topical and systemic antimycotic drugs (i.e. clotrimazole, fluconazole, ketoconazole, miconazole, tioconazole, amphotericin B). Compounds endowed with the lowest MICs underwent further testing in order to assess their cytotoxic effect (CC50) on Hep2 cells, which demonstrated their relative safety. Finally, QSAR and 3-D QSAR models were used to predict putative chemical modifications of the 1,3-thiazolidin-4-one scaffold in order to design new and potential more active compounds against Candida spp.


Five- and Six-Membered Nitrogen-Containing Compounds as Selective Carbonic Anhydrase Activators.

  • Adriano Mollica‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

It has been proven that specific isoforms of human carbonic anhydrase (hCA) are able to fine-tune physiological pathways connected to signal processing, and that decreased CAs expression negatively influences cognition, leading to mental retardation, Alzheimer's disease, and aging-related cognitive dysfunctions. For this reason, a small library of natural and synthetic nitrogen containing cyclic derivatives was assayed as activators of four human isoforms of carbonic anhydrase (hCA I, II, IV and VII). Most of the compounds activated hCA I, IV and VII in the micromolar range, with KAs ranging between 3.46 and 80.5 μM, whereas they were not active towards hCA II (KAs > 100 μM). Two natural compounds, namely l-(+)-ergothioneine (1) and melatonin (2), displayed KAs towards hCA VII in the nanomolar range after evaluation by a CO₂ hydration method in vitro, showing a rather efficient and selective activation profile with respect to histamine, used as a reference compound. Corroborated with the above in vitro findings, a molecular modelling in silico approach has been performed to correlate these biological data, and to elucidate the binding interaction of these activators within the enzyme active site.


Essential oils against bacterial isolates from cystic fibrosis patients by means of antimicrobial and unsupervised machine learning approaches.

  • Rino Ragno‎ et al.
  • Scientific reports‎
  • 2020‎

Recurrent and chronic respiratory tract infections in cystic fibrosis (CF) patients result in progressive lung damage and represent the primary cause of morbidity and mortality. Staphylococcus aureus (S. aureus) is one of the earliest bacteria in CF infants and children. Starting from early adolescence, patients become chronically infected with Gram-negative non-fermenting bacteria, and Pseudomonas aeruginosa (P. aeruginosa) is the most relevant and recurring. Intensive use of antimicrobial drugs to fight lung infections inevitably leads to the onset of antibiotic resistant bacterial strains. New antimicrobial compounds should be identified to overcome antibiotic resistance in these patients. Recently interesting data were reported in literature on the use of natural derived compounds that inhibited in vitro S. aureus and P. aeruginosa bacterial growth. Essential oils, among these, seemed to be the most promising. In this work is reported an extensive study on 61 essential oils (EOs) against a panel of 40 clinical strains isolated from CF patients. To reduce the in vitro procedure and render the investigation as convergent as possible, machine learning clusterization algorithms were firstly applied to pick-up a fewer number of representative strains among the panel of 40. This approach allowed us to easily identify three EOs able to strongly inhibit bacterial growth of all bacterial strains. Interestingly, the EOs antibacterial activity is completely unrelated to the antibiotic resistance profile of each strain. Taking into account the results obtained, a clinical use of EOs could be suggested.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: