Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

In Situ Microparticles Loaded with S-Nitrosoglutathione Protect from Stroke.

  • Marianne Parent‎ et al.
  • PloS one‎
  • 2015‎

Treatment of stroke, especially during the first hours or days, is still lacking. S-nitrosoglutathione (GSNO), a cerebroprotective agent with short life time, may help if administered early with a sustain delivery while avoiding intensive reduction in blood pressure. We developed in situ forming implants (biocompatible biodegradable copolymer) and microparticles (same polymer and solvent emulsified with an external oily phase) of GSNO to lengthen its effects and allow cerebroprotection after a single subcutaneous administration to Wistar rats. Arterial pressure was recorded for 3 days (telemetry, n = 14), whole-blood platelet aggregation up to 13 days (aggregometry, n = 58), and neurological score, cerebral infarct size and edema volume for 2 days after obstruction of the middle cerebral artery by autologous blood clots (n = 30). GSNO-loaded formulations (30 mg/kg) induced a slighter and longer hypotension (-10 vs. -56 ± 6 mmHg mean arterial pressure, 18 h vs. 40 min) than free GSNO at the same dose. The change in pulse pressure (-50%) lasted even up to 42 h for microparticles. GSNO-loaded formulations (30 mg/kg) prevented the transient 24 h hyper-aggregability observed with free GSNO and 7.5 mg/kg-loaded formulations. When injected 2 h after stroke, GSNO-loaded microparticles (30 mg/kg) reduced neurological score at 24 (-62%) and 48 h (-75%) vs. empty microparticles and free GSNO 7.5 mg/kg and, compared to free GSNO, divided infarct size by 10 and edema volume by 8 at 48 h. Corresponding implants reduced infarct size and edema volume by 2.5 to 3 times. The longer (at least 2 days) but slight effects on arterial pressures show sustained delivery of GSNO-loaded formulations (30 mg/kg), which prevent transient platelet hyper-responsiveness and afford cerebroprotection against the consequences of stroke. In conclusion, in situ GSNO-loaded formulations are promising candidates for the treatment of stroke.


Impact of short-term treatment with telmisartan on cerebral arterial remodeling in SHR.

  • Sébastien Foulquier‎ et al.
  • PloS one‎
  • 2014‎

Chronic hypertension decreases internal diameter of cerebral arteries and arterioles. We recently showed that short-term treatment with the angiotensin II receptor blocker telmisartan restored baseline internal diameter of small cerebral arterioles in spontaneously hypertensive rats (SHR), via reversal of structural remodeling and inhibition of the angiotensin II vasoconstrictor response. As larger arteries also participate in the regulation of cerebral circulation, we evaluated whether similar short-term treatment affects middle cerebral arteries of SHR.


In vivo and in silico evaluation of a new nitric oxide donor, S,S'-dinitrosobucillamine.

  • Marie-Lynda Bouressam‎ et al.
  • Nitric oxide : biology and chemistry‎
  • 2017‎

In a previous work, we have synthetized a new dinitrosothiol, i.e. S,S'-dinitrosobucillamine BUC(NO)2 combining S-nitroso-N-acetylpenicillamine (SNAP) and S-nitroso-N-acetylcysteine (NACNO) in its structure. When exposed to isolated aorta, we observed a 1.5-fold increase of •NO content and a more potent vasorelaxation (1 log higher pD2) compared to NACNO and SNAP alone or combined (Dahboul et al., 2014). In the present study, we analyzed the thermodynamics and kinetics for the release of •NO through computational modeling techniques and correlated it to plasma assays. Then BUC(NO)2 was administered in vivo to rats, assuming it will induce higher and/or longer hypotensive effects than its two constitutive S-mononitrosothiols.


Reduced Activity of the Aortic Gamma-Glutamyltransferase Does Not Decrease S-Nitrosoglutathione Induced Vasorelaxation of Rat Aortic Rings.

  • Caroline Perrin-Sarrado‎ et al.
  • Frontiers in physiology‎
  • 2016‎

Aims: Gamma-glutamyl transferase (GGT), an enzyme present on the endothelium, is involved in the release of nitric oxide (NO) from S-nitrosoglutathione (GSNO) and in the GSNO-induced vasodilation. Endogenous GSNO is a physiological storage form of NO in tissues while exogenous GSNO is an interesting candidate for compensating for the decreased NO bioavailability occurring during cardiovascular diseases. We investigated in a rat model of human hypertension, the spontaneous hypertensive rat (SHR), submitted or not to high salt diet, whether a decreased vascular GGT activity modifies the vasorelaxant effect of GSNO. Methods: Thoracic aortic rings isolated from male SHR and Wistar Kyoto rats (WKY) aged 20-22 weeks-submitted or not for 8 weeks to a high salt diet (1% w/v NaCl in drinking water) were pre-constricted with phenylephrine then submitted to concentration-vasorelaxant response curves (maximal response: Emax; pD2) to carbachol or sodium nitroprusside to evaluate endothelial dependent or independent NO-induced vasodilation, or GSNO (exogenous NO vasodilation depending from the endothelial GGT activity). GGT activity was measured using a chromogenic substrate in aortic homogenates. Its role in GSNO-induced relaxation was assessed following inhibition of the enzyme activity (serine-borate complex). That of protein disulfide isomerase (PDI), another redox sensitive enzyme involved in GSNO metabolism, was assessed following inhibition with bacitracin. Results: Aortic GGT activity (18-23 μmol/min/mg of tissue in adult WKY) decreased by 33% in SHR and 45% in SHR with high salt diet. Emax and pD2 for sodium nitroprusside were similar in all groups. Emax for carbachol decreased by -14%, reflecting slight endothelial NO-dependent dysfunction. The GSNO curve was slightly shifted to the left in SHR and in SHR with high salt diet, showing a small enhanced sensitivity to GSNO. Involvements of GGT, as that of PDI, in the GSNO effects were similar in all groups (pD2 for GSNO -0.5 to -1.5 following enzymatic inhibition). Conclusion: Hypertension is associated with a decreased aortic GGT activity without decreasing the vasorelaxant effects of GSNO, whose bioactivity may be supplemented through the alternative enzymatic activity of PDI.


S-nitrosoglutathione inhibits cerebrovascular angiotensin II-dependent and -independent AT1 receptor responses: A possible role of S-nitrosation.

  • Marie-Lynda Bouressam‎ et al.
  • British journal of pharmacology‎
  • 2019‎

Angiotensin II (AngII) and NO regulate the cerebral circulation. AngII AT1 receptors exert ligand-dependent and ligand-independent (myogenic tone [MT]) vasoconstriction of cerebral vessels. NO induces post-translational modifications of proteins such as S-nitrosation (redox modification of cysteine residues). In cultured cells, S-nitrosation decreases AngII's affinity for the AT1 receptor. The present work evaluated the functional consequences of S-nitrosation on both AngII-dependent and AngII-independent cerebrovascular responses.


Endothelial γ-glutamyltransferase contributes to the vasorelaxant effect of S-nitrosoglutathione in rat aorta.

  • Fatima Dahboul‎ et al.
  • PloS one‎
  • 2012‎

S-nitrosoglutathione (GSNO) involved in storage and transport of nitric oxide ((•)NO) plays an important role in vascular homeostasis. Breakdown of GSNO can be catalyzed by γ-glutamyltransferase (GGT). We investigated whether vascular GGT influences the vasorelaxant effect of GSNO in isolated rat aorta. Histochemical localization of GGT and measurement of its activity were performed by using chromogenic substrates in sections and in aorta homogenates, respectively. The role of GGT in GSNO metabolism was evaluated by measuring GSNO consumption rate (absorbance decay at 334 nm), (•)NO release was visualized and quantified with the fluorescent probe 4,5-diaminofluorescein diacetate. The vasorelaxant effect of GSNO was assayed using isolated rat aortic rings (in the presence or absence of endothelium). The role of GGT was assessed by stimulating enzyme activity with cosubstrate glycylglycine, as well as using two independent inhibitors, competitive serine borate complex and non-competitive acivicin. Specific GGT activity was histochemically localized in the endothelium. Consumption of GSNO and release of free (•)NO decreased and increased in presence of serine borate complex and glycylglycine, respectively. In vasorelaxation experiments with endothelium-intact aorta, the half maximal effective concentration of GSNO (EC50 = 3.2 ± 0.5.10(-7) M) increased in the presence of the two distinct GGT inhibitors, serine borate complex (1.6 ± 0.2.10(-6) M) and acivicin (8.3 ± 0.6.10(-7) M), while it decreased with glycylglycine (4.7 ± 0.9.10(-8) M). In endothelium-denuded aorta, EC(50) for GSNO alone increased to 2.3 ± 0.3.10(-6) M, with no change in the presence of serine borate complex. These data demonstrate the important role of endothelial GGT activity in mediating the vasorelaxant effect of GSNO in rat aorta under physiological conditions. Because therapeutic treatments based on GSNO are presently under development, this endothelium-dependent mechanism involved in the vascular effects of GSNO should be taken into account in a pharmacological perspective.


Differential effects of short-term treatment with two AT1 receptor blockers on diameter of pial arterioles in SHR.

  • Sébastien Foulquier‎ et al.
  • PloS one‎
  • 2012‎

Chronic treatment with angiotensin receptor blockers is largely accepted for protecting cerebral circulation during hypertension, but beneficial effects of short-term treatments are questionable, as highlighted by the recent SCAST trial. We compared the impact of 10 days treatment with candesartan (as SCAST) versus telmisartan (previously described to reverse arteriolar remodeling, chronic treatment) on pial arterioles of spontaneously hypertensive rats (SHR). We explored whether PPAR-gamma agonist activity or AT(1) receptor blockade are involved in their differential effects. In the first study, 4-month-old male SHR were treated with telmisartan (TELMI, 2 mg/kg per day) or candesartan cilexetil (CANDE, 10 mg/kg per day) and compared to vehicle treated SHR and normotensive WKY. In a second study, SHR were treated with CANDE, pioglitazone (a PPAR-gamma agonist, PIO 2.5 mg/kg per day) or CANDE+PIO, compared to TELMI. Internal diameter of pial arterioles (ID, cranial window) was measured at baseline, during hemorrhage-induced hypotension, or following suffusion of Ang II (10(-6) mol/L) or EDTA inactivation of smooth muscle cells (passive ID). PPAR-gamma and eNOS (target gene of PPAR-gamma) mRNA were evaluated in brain microvessels. For similar antihypertensive effects, TELMI (+44% versus SHR), but not CANDE, increased baseline ID. During hemorrhage, ID in TELMI group was similar to WKY, while ID in SHR and CANDE remained lower. In the second study, TELMI (+36%, versus SHR) and CANDE+PIO (+43%) increased baseline ID, but not CANDE or PIO alone. TELMI (-66%) and CANDE+PIO (-69%), but neither CANDE nor PIO alone, decreased Ang II-induced vasoconstriction. CANDE+PIO, but not CANDE, increased passive ID. In both studies, PPAR-gamma and eNOS expressions were higher in TELMI than CANDE. Short-term treatment with TELMI, but not with CANDE, reverses narrowing of pial arteriolar ID in SHR. This may involve PPAR-gamma related mechanisms, since CANDE+PIO treatment induced similar effects, and a better blockade of AT(1) receptors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: