Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

PTEN mediates the cross talk between breast and glial cells in brain metastases leading to rapid disease progression.

  • Ina Hohensee‎ et al.
  • Oncotarget‎
  • 2017‎

Despite improvement of therapeutic treatments for breast cancer, the development of brain metastases has become a major limitation to life expectancy for many patients. Brain metastases show very commonly alterations in EGFR and HER2 driven pathways, of which PTEN is an important regulator. Here, we analyzed PTEN expression in 111 tissue samples of breast cancer brain metastases (BCBM). Loss of PTEN was found in a substantial proportion of BCBM samples (48.6%) and was significantly associated with triple-negative breast cancer (67.5%, p = 0.001) and a shorter survival time after surgical resection of brain metastases (p = 0.048). Overexpression of PTEN in brain-seeking MDA-MB-231 BR cells in vitro reduced activation of the AKT pathway, notably by suppression of Akt1 kinase activity. Furthermore, the migration of MDA-MB-231 BR cells in vitro was promoted by co-culturing with both astrocytes and microglial cells. Interestingly, when PTEN was overexpressed the migration was significantly inhibited. Moreover, in an ex vivo organotypic brain slice model, PTEN overexpression reduced invasion of tumor cells. This was accompanied by reduced astrocyte activation that was mediated by autocrine and paracrine activation of GM-CSF/ CSF2RA and AKT/ PTEN pathways. In conclusion, loss of PTEN is frequently detected in triple-negative BCBM patients and associated with poor prognosis. The findings of our functional studies suggest that PTEN loss promotes a feedback loop between tumor cells and glial cells, which might contribute to disease progression.


Comparative study of whole genome amplification and next generation sequencing performance of single cancer cells.

  • Anna Babayan‎ et al.
  • Oncotarget‎
  • 2017‎

Whole genome amplification (WGA) is required for single cell genotyping. Effectiveness of currently available WGA technologies in combination with next generation sequencing (NGS) and material preservation is still elusive.


Loss of CADM1 expression is associated with poor prognosis and brain metastasis in breast cancer patients.

  • Harriet Wikman‎ et al.
  • Oncotarget‎
  • 2014‎

Breast cancer brain metastases (BCBM) are detected with increasing incidence. In order to detect potential genes involved in BCBM, we first screened for genes down-regulated by methylation in cell lines with site-specific metastatic ability. The expression of five genes, CADM1, SPARC, RECK, TNFAIP3 and CXCL14, which were also found down-regulated in gene expression profiling analyses of BCBM tissue samples, was verified by qRT-PCR in a larger patient cohort. CADM1 was chosen for further down-stream analyses. A higher incidence of CADM1 methylation, correlating with lower expression levels, was found in BCBM as compared to primary BC. Loss of CADM1 protein expression was detected most commonly among BCBM samples as well as among primary tumors with subsequent brain relapse. The prognostic role of CADM1 expression was finally verified in four large independent breast cancer cohorts (n=2136). Loss of CADM1 protein expression was associated with disease stage, lymph node status, and tumor size in primary BC. Furthermore, all analyses revealed a significant association between loss of CADM1 and shorter survival. In multivariate analyses, survival was significantly shorter among patients with CADM1-negative tumors. Loss of CADM1 expression is an independent prognostic factor especially associated with the development of brain metastases in breast cancer patients.


RHAMM splice variants confer radiosensitivity in human breast cancer cell lines.

  • Alexandra Schütze‎ et al.
  • Oncotarget‎
  • 2016‎

Biomarkers for prognosis in radiotherapy-treated breast cancer patients are urgently needed and important to stratify patients for adjuvant therapies. Recently, a role of the receptor of hyaluronan-mediated motility (RHAMM) has been suggested for tumor progression. Our aim was (i) to investigate the prognostic value of RHAMM in breast cancer and (ii) to unravel its potential function in the radiosusceptibility of breast cancer cells. We demonstrate that RHAMM mRNA expression in breast cancer biopsies is inversely correlated with tumor grade and overall survival. Radiosusceptibility in vitro was evaluated by sub-G1 analysis (apoptosis) and determination of the proliferation rate. The potential role of RHAMM was addressed by short interfering RNAs against RHAMM and its splice variants. High expression of RHAMMv1/v2 in p53 wild type cells (MCF-7) induced cellular apoptosis in response to ionizing radiation. In comparison, in p53 mutated cells (MDA-MB-231) RHAMMv1/v2 was expressed sparsely resulting in resistance towards irradiation induced apoptosis. Proliferation capacity was not altered by ionizing radiation in both cell lines. Importantly, pharmacological inhibition of the major ligand of RHAMM, hyaluronan, sensitized both cell lines towards radiation induced cell death. Based on the present data, we conclude that the detection of RHAMM splice variants in correlation with the p53 mutation status could help to predict the susceptibility of breast cancer cells to radiotherapy. Additionally, our studies raise the possibility that the response to radiotherapy in selected cohorts may be improved by pharmaceutical strategies against RHAMM and its ligand hyaluronan.


Strong fascin expression promotes metastasis independent of its F-actin bundling activity.

  • Lisa S Heinz‎ et al.
  • Oncotarget‎
  • 2017‎

High expression of the actin bundling protein Fascin increases the malignancy of tumor cells. Here we show that fascin expression is up-regulated in more malignant sub-cell lines of MDA-MB-231 cells as compared to parental cells. Since also parental MDA-MB-231 cells exhibit high fascin levels, increased fascin expression was termed as "hyperexpression". To examine the effect of fascin hyperexpression, fascin was hyperexpressed in parental MDA-MB-231 cells and metastasis was analyzed in NOD scid gamma (NSG) mice. In addition, the effect of fascin mutants with inactive or constitutively active actin bundling activity was examined. Unexpectedly, we found that hyperexpression of both, wildtype (wt) and mutant fascin strongly increased metastasis in vivo, showing that the effect of fascin hyperexpression did not depend on its actin bundling activity. Cellular assays revealed that hyperexpression of wt and mutant fascin increased adhesion of MDA-MB-231 cells while transmigration and proliferation were not affected. Since it has been shown that fascin controls adhesion by directly interacting with microtubules (MTs), we analyzed if fascin hyperexpression affects MT dynamics. We found that at high concentrations fascin significantly increased MT dynamics in cells and in cell-free approaches. In summary our data show that strong expression of fascin in breast cancer cells increases metastasis independent of its actin bundling activity. Thus, it seems that the mechanism of fascin-stimulated metastasis depends on its concentration.


Stromal expression of ALDH1 in human breast carcinomas indicates reduced tumor progression.

  • Natalia Bednarz-Knoll‎ et al.
  • Oncotarget‎
  • 2015‎

Interactions between cancer cells and microenvironment are emerging issue in tumor progression. Aldehyde dehydrogenase 1 (ALDH1) is a recognized cancer stem cell marker but little is known about its role in intratumoral stroma. Therefore, we focused on ALDH1 expression in tumor-associated stroma of breast carcinomas (BrCa). Stromal and tumoral ALDH1 expression was evaluated immunohistochemically in BrCa and their lymph node metastases (LNMs), and related to clinico-pathological characteristics, patients' outcome, presence of CD68, HLADR, retinoic acid (RA) in stroma, and selected proteins in tumor cells. ALDH1(+) stromal cells were detected in 53% of 374 BrCa and 61% of 102 LNMs. ALDH1(+) stroma in primary tumor correlated to longer disease-free (p = 0.030), metastasis-free (p = 0.024), and overall survival (p = 0.043) having an independent prognostic impact on DFS (multivariate analysis, p = 0.047). It was associated with concomitant presence of HLA-DR(+) stromal cells and RA in tumor cells (both p < 0.001), and inversely associated with vimentin expression in tumor cells (p = 0.036). ALDH1(+) stroma in LNMs correlated inversely to presence of disseminated tumor cells in patients' bone marrow (p = 0.014) and was independent prognosticator of shorter DFS and MFS (multivariate analysis, p = 0.004 and p = 0.002, respectively). In conclusion, ALDH1 expression in tumor-associated stromal cells indicates reduced BrCa progression, possibly via RA secretion.


Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients.

  • Corinna Eichelser‎ et al.
  • Oncotarget‎
  • 2014‎

In this study, we compared the blood serum levels of circulating cell-free and exosomal microRNAs, and their involvement in the molecular subtypes of breast cancer patients. Our analyses on cell-free miR-101, miR-372 and miR-373 were performed in preoperative blood serum of 168 patients with invasive breast cancer, 19 patients with benign breast diseases and 28 healthy women. MicroRNAs were additionally quantified in exosomes of 50 cancer patients and 12 healthy women from the same cohort. Relative concentrations were measured by quantitative TaqMan MicroRNA assays and correlated to clinicopathological risk factors. The concentrations of cell-free miR-101 (p=0.013) and miR-373 (p=0.024) were significantly different between patients with breast cancer and benign tumors. A prevalence of miR-101, miR-372 and miR-373 were found in exosomes. The levels of circulating exosomal (but not cell-free) miR-373 were higher in triple negative than luminal carcinomas (p=0.027). Also, estrogen-negative (p=0.021) and progesterone-negative (p=0.01) tumors displayed higher concentrations of exosomal miR-373 than patients with hormone-receptor positive tumors. Overexpression of miR-373 by transfection of MCF-7 cells showed downregulated protein expression of the estrogen receptor, and inhibition of apoptosis induced by camptothecin. Our data indicate that serum levels of exosomal miR-373 are linked to triple negative and more aggressive breast carcinomas.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: