Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 84 papers

Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

  • Magali Roques‎ et al.
  • PLoS pathogens‎
  • 2015‎

Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.


The Binding of Plasmodium falciparum Adhesins and Erythrocyte Invasion Proteins to Aldolase Is Enhanced by Phosphorylation.

  • Suraya A Diaz‎ et al.
  • PloS one‎
  • 2016‎

Aldolase has been implicated as a protein coupling the actomyosin motor and cell surface adhesins involved in motility and host cell invasion in the human malaria parasite Plasmodium falciparum. It binds to the cytoplasmic domain (CTD) of type 1 membrane proteins of the thrombospondin-related anonymous protein (TRAP) family. Other type 1 membrane proteins located in the apical organelles of merozoites, the form of the parasite that invades red blood cells, including apical membrane antigen 1 (AMA1) and members of the erythrocyte binding ligand (EBL) and reticulocyte binding homologue (RH) protein families have been implicated in host cell binding and invasion. Using a direct binding method we confirm that TRAP and merozoite TRAP (MTRAP) bind aldolase and show that the interaction is mediated by more than just the C-terminal six amino acid residues identified previously. Single amino acid substitutions in the MTRAP CTD abolished binding to aldolase. The CTDs of AMA1 and members of the EBL and RH protein families also bound to aldolase. MTRAP competed with AMA1 and RH4 for binding to aldolase, indicating overlapping binding sites. MTRAP CTD was phosphorylated in vitro by both calcium dependent kinase 1 (CDPK1) and protein kinase A, and this modification increased the affinity of binding to aldolase by ten-fold. Phosphorylation of the CTD of members of the EBL and RH protein families also increased their affinity for aldolase in some cases. To examine whether or not MTRAP expressed in asexual blood stage parasites is phosphorylated, it was tagged with GFP, purified and analysed, however no phosphorylation was detected. We propose that CTD binding to aldolase may be dynamically modulated by phosphorylation, and there may be competition for aldolase binding between different CTDs. The use and efficiency of alternate invasion pathways may be determined by the affinity of adhesins and cell invasion proteins for aldolase, in addition to their host ligand specificity.


Targeting of Fzr/Cdh1 for timely activation of the APC/C at the centrosome during mitotic exit.

  • Francesco Meghini‎ et al.
  • Nature communications‎
  • 2016‎

A multi-subunit ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), regulates critical cellular processes including the cell cycle. To accomplish its diverse functions, APC/C activity must be precisely regulated in time and space. The interphase APC/C activator Fizzy-related (Fzr or Cdh1) is localized at centrosomes in animal cells. However, neither the mechanism of its localization nor its importance is clear. Here we identify the centrosome component Spd2 as a major partner of Fzr in Drosophila. The localization of Fzr to the centriole during interphase depends on direct interaction with Spd2. By generating Spd2 mutants unable to bind Fzr, we show that centrosomal localization of Fzr is essential for optimal APC/C activation towards its centrosomal substrate Aurora A. Finally, we show that Spd2 is also a novel APC/C(Fzr) substrate. Our study is the first to demonstrate the critical importance of distinct subcellular pools of APC/C activators in the spatiotemporal control of APC/C activity.


Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle.

  • Robert Stallmach‎ et al.
  • Molecular microbiology‎
  • 2015‎

The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain-like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain-like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596-containing parasite-derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity-purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C-terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non-enzymatic role in the P. falciparum blood-stage life cycle.


A unique protein phosphatase with kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion.

  • David S Guttery‎ et al.
  • PLoS pathogens‎
  • 2012‎

Protein phosphorylation and dephosphorylation (catalysed by kinases and phosphatases, respectively) are post-translational modifications that play key roles in many eukaryotic signalling pathways, and are often deregulated in a number of pathological conditions in humans. In the malaria parasite Plasmodium, functional insights into its kinome have only recently been achieved, with over half being essential for blood stage development and another 14 kinases being essential for sexual development and mosquito transmission. However, functions for any of the plasmodial protein phosphatases are unknown. Here, we use reverse genetics in the rodent malaria model, Plasmodium berghei, to examine the role of a unique protein phosphatase containing kelch-like domains (termed PPKL) from a family related to Arabidopsis BSU1. Phylogenetic analysis confirmed that the family of BSU1-like proteins including PPKL is encoded in the genomes of land plants, green algae and alveolates, but not in other eukaryotic lineages. Furthermore, PPKL was observed in a distinct family, separate to the most closely-related phosphatase family, PP1. In our genetic approach, C-terminal GFP fusion with PPKL showed an active protein phosphatase preferentially expressed in female gametocytes and ookinetes. Deletion of the endogenous ppkl gene caused abnormal ookinete development and differentiation, and dissociated apical microtubules from the inner-membrane complex, generating an immotile phenotype and failure to invade the mosquito mid-gut epithelium. These observations were substantiated by changes in localisation of cytoskeletal tubulin and actin, and the micronemal protein CTRP in the knockout mutant as assessed by indirect immunofluorescence. Finally, increased mRNA expression of dozi, a RNA helicase vital to zygote development was observed in ppkl(-) mutants, with global phosphorylation studies of ookinete differentiation from 1.5-24 h post-fertilisation indicating major changes in the first hours of zygote development. Our work demonstrates a stage-specific essentiality of the unique PPKL enzyme, which modulates parasite differentiation, motility and transmission.


Unique apicomplexan IMC sub-compartment proteins are early markers for apical polarity in the malaria parasite.

  • Benoit Poulin‎ et al.
  • Biology open‎
  • 2013‎

The phylum Apicomplexa comprises over 5000 intracellular protozoan parasites, including Plasmodium and Toxoplasma, that are clinically important pathogens affecting humans and livestock. Malaria parasites belonging to the genus Plasmodium possess a pellicle comprised of a plasmalemma and inner membrane complex (IMC), which is implicated in parasite motility and invasion. Using live cell imaging and reverse genetics in the rodent malaria model P. berghei, we localise two unique IMC sub-compartment proteins (ISPs) and examine their role in defining apical polarity during zygote (ookinete) development. We show that these proteins localise to the anterior apical end of the parasite where IMC organisation is initiated, and are expressed at all developmental stages, especially those that are invasive. Both ISP proteins are N-myristoylated, phosphorylated and membrane-bound. Gene disruption studies suggest that ISP1 is likely essential for parasite development, whereas ISP3 is not. However, an absence of ISP3 alters the apical localisation of ISP1 in all invasive stages including ookinetes and sporozoites, suggesting a coordinated function for these proteins in the organisation of apical polarity in the parasite.


Generating conditional gene knockouts in Plasmodium - a toolkit to produce stable DiCre recombinase-expressing parasite lines using CRISPR/Cas9.

  • Ellen Knuepfer‎ et al.
  • Scientific reports‎
  • 2017‎

Successful establishment of CRISPR/Cas9 genome editing technology in Plasmodium spp. has provided a powerful tool to transform Plasmodium falciparum into a genetically more tractable organism. Conditional gene regulation approaches are required to study the function of gene products critical for growth and erythrocyte invasion of blood stage parasites. Here we employ CRISPR/Cas9 to facilitate use of the dimerisable Cre-recombinase (DiCre) that is frequently used to mediate the excision and loss of loxP-flanked DNA sequences in a rapamycin controlled manner. We describe novel CRISPR/Cas9 transfection plasmids and approaches for the speedy, stable and marker-free introduction of transgenes encoding the DiCre recombinase into genomic loci dispensable for blood stage development. Together these plasmids form a toolkit that will allow the rapid generation of transgenic DiCre-expressing P. falciparum lines in any genetic background. Furthermore, the newly developed 3D7-derived parasite lines, constitutively and stably expressing DiCre, generated using this toolkit will prove useful for the analysis of gene products. Lastly, we introduce an improved treatment protocol that uses a lower rapamycin concentration and shorter treatment times, leading to loxP-guided recombination with close to 100% efficiency within the same replication cycle.


Characterisation of the rhoph2 gene of Plasmodium falciparum and Plasmodium yoelii.

  • Irene T Ling‎ et al.
  • Molecular and biochemical parasitology‎
  • 2003‎

The high molecular mass protein complex (RhopH) in the rhoptries of the malaria parasite consists of three distinct polypeptides with estimated sizes in Plasmodium falciparum of 155kDa (PfRhopH1), 140kDa (PfRhopH2) and 110kDa (PfRhopH3). Using a number of reagents, including a new mAb 4E10 that is specific for the PfRhopH complex, it was shown that the RhopH complex is synthesised during schizogony and transferred intact to the ring stage in newly invaded erythrocytes. The genes encoding RhopH1 and RhopH3 have already been identified and characterised in both P. falciparum and Plasmodium yoelii. In this report, we describe the identification of the gene for RhopH2 in both these parasite species. Peptide sequences were obtained from purified RhopH2 proteins and used to generate oligonucleotide primers and search malaria sequence databases. In a parallel approach, mAb 4E10 was used to identify a clone coding for RhopH2 from a P. falciparum cDNA library. The sequences of both P. falciparum and P. yoelii genes for RhopH2 were completed and compared. They both contain nine introns and there is a high degree of similarity between the deduced amino acid sequences of the two proteins. The P. falciparum gene is a single copy gene located on chromosome 9, and is transcribed in schizonts.


A novel Sushi domain-containing protein of Plasmodium falciparum.

  • Aisling H O'Keeffe‎ et al.
  • Molecular and biochemical parasitology‎
  • 2005‎

Using bioinformatics analyses of the completed malaria genome sequence, we have identified a novel protein with a potential role in erythrocyte invasion. The protein (PFD0295c, ) has a predicted signal sequence and transmembrane domain and a sequence near the C-terminus of the protein shows significant similarity with Sushi domains. These domains, which exist in a wide variety of complement and adhesion proteins, have previously been shown to be involved in protein-protein and protein-ligand interactions. Orthologous genes have also been identified in the genomes of several other Plasmodium species, suggesting a conserved function for this protein in Plasmodium. Our results show that this protein is located in apical organelles and we have therefore designated the protein apical Sushi protein (ASP). We show that the expression of ASP is tightly regulated in the intraerythrocytic stages of the parasite and that it undergoes post-translational proteolytic processing. Based on our observations of timing of expression, location and proteolytic processing, we propose a role for ASP in erythrocyte invasion.


Extensive proteolytic processing of the malaria parasite merozoite surface protein 7 during biosynthesis and parasite release from erythrocytes.

  • Justin A Pachebat‎ et al.
  • Molecular and biochemical parasitology‎
  • 2007‎

In Plasmodium falciparum, merozoite surface protein 7 (MSP7) was originally identified as a 22kDa protein on the merozoite surface and associated with the MSP1 complex shed during erythrocyte invasion. MSP7 is synthesised in schizonts as a 351-amino acid precursor that undergoes proteolytic processing. During biosynthesis the MSP1 and MSP7 precursors form a complex that is targeted to the surface of developing merozoites. In the sequential proteolytic processing of MSP7, N- and C-terminal 20 and 33kDa products of primary processing, MSP7(20) and MSP7(33) are formed and MSP7(33) remains bound to full length MSP1. Later in the mature schizont, MSP7(20) disappears from the merozoite surface and on merozoite release MSP7(33) undergoes a secondary cleavage yielding the 22kDa MSP7(22) associated with MSP1. In free merozoites, both MSP7(22) and a further cleaved product, MSP7(19) present only in some parasite lines, were detected; these two derivatives are shed as part of the protein complex with MSP1 fragments during erythrocyte invasion. Primary processing of MSP7 is brefeldin A-sensitive while secondary processing is resistant to both calcium chelators and serine protease inhibitors. Primary processing of MSP7 occurs prior to that of MSP1 in a post-Golgi compartment, whereas the secondary cleavage occurs on the surface of the developing merozoite, possibly at the time of MSP1 primary processing and well before the secondary processing of MSP1.


The motor complex of Plasmodium falciparum: phosphorylation by a calcium-dependent protein kinase.

  • Judith L Green‎ et al.
  • The Journal of biological chemistry‎
  • 2008‎

Calcium-dependent protein kinases (CDPKs) of Apicomplexan parasites are crucial for the survival of the parasite throughout its life cycle. CDPK1 is expressed in the asexual blood stages of the parasite, particularly late stage schizonts. We have identified two substrates of Plasmodium falciparum CDPK1: myosin A tail domain-interacting protein (MTIP) and glideosome-associated protein 45 (GAP45), both of which are components of the motor complex that generates the force required by the parasite to actively invade host cells. Indirect immunofluorescence shows that CDPK1 localizes to the periphery of P. falciparum merozoites and is therefore suitably located to act on MTIP and GAP45 at the inner membrane complex. A proportion of both GAP45 and MTIP is phosphorylated in schizonts, and we demonstrate that both proteins can be efficiently phosphorylated by CDPK1 in vitro. A primary phosphorylation of MTIP occurs at serine 47, whereas GAP45 is phosphorylated at two sites, one of which could also be detected in phosphopeptides purified from parasite lysates. Both CDPK1 activity and host cell invasion can be inhibited by the kinase inhibitor K252a, suggesting that CDPK1 is a suitable target for antimalarial drug development.


Kinesin-8B controls basal body function and flagellum formation and is key to malaria transmission.

  • Mohammad Zeeshan‎ et al.
  • Life science alliance‎
  • 2019‎

Eukaryotic flagella are conserved microtubule-based organelles that drive cell motility. Plasmodium, the causative agent of malaria, has a single flagellate stage: the male gamete in the mosquito. Three rounds of endomitotic division in male gametocyte together with an unusual mode of flagellum assembly rapidly produce eight motile gametes. These processes are tightly coordinated, but their regulation is poorly understood. To understand this important developmental stage, we studied the function and location of the microtubule-based motor kinesin-8B, using gene-targeting, electron microscopy, and live cell imaging. Deletion of the kinesin-8B gene showed no effect on mitosis but disrupted 9+2 axoneme assembly and flagellum formation during male gamete development and also completely ablated parasite transmission. Live cell imaging showed that kinesin-8B-GFP did not co-localise with kinetochores in the nucleus but instead revealed a dynamic, cytoplasmic localisation with the basal bodies and the assembling axoneme during flagellum formation. We, thus, uncovered an unexpected role for kinesin-8B in parasite flagellum formation that is vital for the parasite life cycle.


Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation.

  • Mohammad Zeeshan‎ et al.
  • Journal of cell science‎
  • 2020‎

Eukaryotic cell proliferation requires chromosome replication and precise segregation to ensure daughter cells have identical genomic copies. Species of the genus Plasmodium, the causative agents of malaria, display remarkable aspects of nuclear division throughout their life cycle to meet some peculiar and unique challenges to DNA replication and chromosome segregation. The parasite undergoes atypical endomitosis and endoreduplication with an intact nuclear membrane and intranuclear mitotic spindle. To understand these diverse modes of Plasmodium cell division, we have studied the behaviour and composition of the outer kinetochore NDC80 complex, a key part of the mitotic apparatus that attaches the centromere of chromosomes to microtubules of the mitotic spindle. Using NDC80-GFP live-cell imaging in Plasmodium berghei, we observe dynamic spatiotemporal changes during proliferation, including highly unusual kinetochore arrangements during sexual stages. We identify a very divergent candidate for the SPC24 subunit of the NDC80 complex, previously thought to be missing in Plasmodium, which completes a canonical, albeit unusual, NDC80 complex structure. Altogether, our studies reveal the kinetochore to be an ideal tool to investigate the non-canonical modes of chromosome segregation and cell division in Plasmodium.


Genetic disruption of Plasmodium falciparum Merozoite surface antigen 180 (PfMSA180) suggests an essential role during parasite egress from erythrocytes.

  • Vanndita Bahl‎ et al.
  • Scientific reports‎
  • 2021‎

Plasmodium falciparum, the parasite responsible for severe malaria, develops within erythrocytes. Merozoite invasion and subsequent egress of intraerythrocytic parasites are essential for this erythrocytic cycle, parasite survival and pathogenesis. In the present study, we report the essential role of a novel protein, P. falciparum Merozoite Surface Antigen 180 (PfMSA180), which is conserved across Plasmodium species and recently shown to be associated with the P. vivax merozoite surface. Here, we studied MSA180 expression, processing, localization and function in P. falciparum blood stages. Initially we examined its role in invasion, a process mediated by multiple ligand-receptor interactions and an attractive step for targeting with inhibitory antibodies through the development of a malaria vaccine. Using antibodies specific for different regions of PfMSA180, together with a parasite containing a conditional pfmsa180-gene knockout generated using CRISPR/Cas9 and DiCre recombinase technology, we demonstrate that this protein is unlikely to play a crucial role in erythrocyte invasion. However, deletion of the pfmsa180 gene resulted in a severe egress defect, preventing schizont rupture and blocking the erythrocytic cycle. Our study highlights an essential role of PfMSA180 in parasite egress, which could be targeted through the development of a novel malaria intervention strategy.


Depleted circulatory complement-lysis inhibitor (CLI) in childhood cerebral malaria returns to normal with convalescence.

  • Samuel Eneọjọ Abah‎ et al.
  • Malaria journal‎
  • 2020‎

Cerebral malaria (CM), is a life-threatening childhood malaria syndrome with high mortality. CM is associated with impaired consciousness and neurological damage. It is not fully understood, as yet, why some children develop CM. Presented here is an observation from longitudinal studies on CM in a paediatric cohort of children from a large, densely-populated and malaria holoendemic, sub-Saharan, West African metropolis.


Alternative Protein Secretion in the Malaria Parasite Plasmodium falciparum.

  • Thuvaraka Thavayogarajah‎ et al.
  • PloS one‎
  • 2015‎

Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process.


Binding of Plasmodium falciparum Merozoite Surface Proteins DBLMSP and DBLMSP2 to Human Immunoglobulin M Is Conserved among Broadly Diverged Sequence Variants.

  • Cécile Crosnier‎ et al.
  • The Journal of biological chemistry‎
  • 2016‎

Diversity at pathogen genetic loci can be driven by host adaptive immune selection pressure and may reveal proteins important for parasite biology. Population-based genome sequencing of Plasmodium falciparum, the parasite responsible for the most severe form of malaria, has highlighted two related polymorphic genes called dblmsp and dblmsp2, which encode Duffy binding-like (DBL) domain-containing proteins located on the merozoite surface but whose function remains unknown. Using recombinant proteins and transgenic parasites, we show that DBLMSP and DBLMSP2 directly and avidly bind human IgM via their DBL domains. We used whole genome sequence data from over 400 African and Asian P. falciparum isolates to show that dblmsp and dblmsp2 exhibit extreme protein polymorphism in their DBL domain, with multiple variants of two major allelic classes present in every population tested. Despite this variability, the IgM binding function was retained across diverse sequence representatives. Although this interaction did not seem to have an effect on the ability of the parasite to invade red blood cells, binding of DBLMSP and DBLMSP2 to IgM inhibited the overall immunoreactivity of these proteins to IgG from patients who had been exposed to the parasite. This suggests that IgM binding might mask these proteins from the host humoral immune system.


Suppressive and additive effects in protection mediated by combinations of monoclonal antibodies specific for merozoite surface protein 1 of Plasmodium yoelii.

  • Irosoki Eslava‎ et al.
  • Malaria journal‎
  • 2010‎

The merozoite surface protein (MSP)-1 is a target antigen of protective immunity and a malaria vaccine candidate. The nature of this protective immune response warrants further investigation: although specific antibody is thought to play a major role, the mechanisms of protection are still unclear. Monoclonal antibodies (mAbs) specific for the C-terminus of MSP-1 from Plasmodium yoelii have been shown previously to provide protection against challenge infection when administered by passive immunization to mice. Three protective mAbs were re-examined and, in particular, the effect of combinations of antibodies on the protection provided was studied. It was found that a combination of two antibodies can either provide additive protective effects or result in a suppression of protection. In this report the importance of antibody subclass and epitope specificity in the outcome of these passive immunization experiments are discussed.


The apicoplast genome of Leucocytozoon caulleryi, a pathogenic apicomplexan parasite of the chicken.

  • Takayuki Imura‎ et al.
  • Parasitology research‎
  • 2014‎

Leucocytozoon caulleryi, a haemosporidian parasite of the chicken (Gallus gallus domesticus), can be highly pathogenic and often fatal. Although this parasite is extremely relevant to veterinary science, knowledge of its genomic features is limited. To gain information applicable to developing novel control methods for the parasite, we analyzed the apicoplast genome of L. caulleryi. This extranuclear organellar DNA of 85.1% A + T and a unit of 34,779 bp was found to encode almost the same set of genes as the plastid genome of Plasmodium falciparum, including 16 tRNA and 30 protein coding genes, and except for one open reading frame, ORF91 absent in L. caulleryi. As in P. falciparum, the L. caulleryi apicoplast DNA contains two sets of a unique inverted repeat (IR), each one 5,253 bp and encoding genes specifying one large and one small rRNA subunit and nine tRNAs but no protein, and separated by a unique 13 bp sequence. Studies of several haemosporidian apicoplast DNA sequences have identified a corresponding IR region; however, none of these studies has looked at the complete sequence, even for well-studied species such as P. falciparum. Phylogenetic studies using a concatenated amino acid sequence based on the open reading frames confirmed the close relationship between L. caulleryi and Plasmodium spp. In this study, we determined the nucleotide sequence of the entire L. caulleryi apicoplast genome, including the region connecting the two IR units. This is the first report of the complete nucleotide sequence of a haemosporidian apicoplast DNA with a canonical IR.


Targeting mitotic exit leads to tumor regression in vivo: Modulation by Cdk1, Mastl, and the PP2A/B55α,δ phosphatase.

  • Eusebio Manchado‎ et al.
  • Cancer cell‎
  • 2010‎

Targeting mitotic exit has been recently proposed as a relevant therapeutic approach against cancer. By using genetically engineered mice, we show that the APC/C cofactor Cdc20 is essential for anaphase onset in vivo in embryonic or adult cells, including progenitor/stem cells. Ablation of Cdc20 results in efficient regression of aggressive tumors, whereas current mitotic drugs display limited effects. Yet, Cdc20 null cells can exit from mitosis upon inactivation of Cdk1 and the kinase Mastl (Greatwall). This mitotic exit depends on the activity of PP2A phosphatase complexes containing B55α or B55δ regulatory subunits. These data illustrate the relevance of critical players of mitotic exit in mammals and their implications in the balance between cell death and mitotic exit in tumor cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: