Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 142 papers

Elevated Serum Uric Acid Is Associated with Greater Bone Mineral Density and Skeletal Muscle Mass in Middle-Aged and Older Adults.

  • Xiao-Wei Dong‎ et al.
  • PloS one‎
  • 2016‎

Previous studies have suggested a positive link between serum uric acid (UA) and bone mineral density (BMD). In this study, we re-examined the association between UA and BMD and further explored whether this was mediated by skeletal muscle mass in a general Chinese population.


Decreased Bone Mineral Density Is an Independent Predictor for the Development of Atherosclerosis: A Systematic Review and Meta-Analysis.

  • Chenyi Ye‎ et al.
  • PloS one‎
  • 2016‎

There is conflicting evidence regarding the association between decreased bone mineral density (BMD) and atherosclerosis. To this end, we performed a systematic review and meta-analysis to clarify the association.


HIV Drug Resistance Mutations (DRMs) Detected by Deep Sequencing in Virologic Failure Subjects on Therapy from Hunan Province, China.

  • Xi Chen‎ et al.
  • PloS one‎
  • 2016‎

Determine HIV drug resistance mutations (DRMs) prevalence at low and high levels in ART-experienced patients experiencing virologic failure (VF).


Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms.

  • Xi Chen‎ et al.
  • PloS one‎
  • 2014‎

Infection is one of the most prevalent causes for dental implant failure. We have developed a novel antimicrobial peptide coating on titanium by immobilizing the antimicrobial peptide GL13K. GL13K was developed from the human salivary protein BPIFA2. The peptide exhibited MIC of 8 µg/ml against planktonic Pseudonomas aeruginosa and their biofilms were reduced by three orders of magnitude with 100 µg/ml GL13K. This peptide concentration also killed 100% of Streptococcus gordonii. At 1 mg/ml, GL13K caused less than 10% lysis of human red blood cells, suggesting low toxicity to mammalian cells. Our GL13K coating has also previously showed bactericidal effect and inhibition of biofilm growth against peri-implantitis related pathogens, such as Porphyromonas gingivalis. The GL13K coating was cytocompatible with human fibroblasts and osteoblasts. However, the bioactivity of antimicrobial coatings has been commonly tested under (quasi)static culture conditions that are far from simulating conditions for biofilm formation and growth in the oral cavity. Oral salivary flow over a coating is persistent, applies continuous shear forces, and supplies sustained nutrition to bacteria. This accelerates bacteria metabolism and biofilm growth. In this work, the antimicrobial effect of the coating was tested against Streptococcus gordonii, a primary colonizer that provides attachment for the biofilm accretion by P. gingivalis, using a drip-flow biofilm bioreactor with media flow rates simulating salivary flow. The GL13K peptide coatings killed bacteria and prevented formation and growth of S. gordonii biofilms in the drip-flow bioreactor and under regular mild-agitation conditions. Surprisingly the interaction of the bacteria with the GL13K peptide coatings ruptured the cell wall at their septum or polar areas leaving empty shell-like structures or exposed protoplasts. The cell wall rupture was not detected under regular culture conditions, suggesting that cell wall rupture induced by GL13K peptides also requires media flow and possible attendant biological sequelae of the conditions in the bioreactor.


MiR-143 and MiR-145 regulate IGF1R to suppress cell proliferation in colorectal cancer.

  • Jiaojiao Su‎ et al.
  • PloS one‎
  • 2014‎

Insulin-like growth factor 1 receptor (IGF1R) is a transmembrane receptor that is activated by insulin-like growth factor 1 (IGF-1) and by a related hormone called IGF-2. It belongs to the large class of tyrosine kinase receptors and plays an important role in colorectal cancer etiology and progression. In this study, we used bioinformatic analyses to search for miRNAs that potentially target IGF1R. We identified specific target sites for miR-143 and miR-145 (miR-143/145) in the 3'-untranslated region (3'-UTR) of the IGF1R gene. These miRNAs are members of a cluster of miRNAs that have been reported to exhibit tumor suppressor activity. Consistent with the bioinformatic analyses, we identified an inverse correlation between miR-143/145 levels and IGF1R protein levels in colorectal cancer tissues. By overexpressing miR-143/145 in Caco2, HT29 and SW480 colorectal cancer cells, we experimentally validated that miR-143/145 directly recognizes the 3'-UTR of the IGF1R transcript and regulates IGF1R expression. Furthermore, the biological consequences of the targeting of IGF1R by miR-143/145 were examined by cell proliferation assays in vitro. We demonstrated that the repression of IGF1R by miR-143/145 suppressed the proliferation of Caco2 cells. Taken together, our findings provide evidence for a role of the miR-143/145 cluster as a tumor suppressor in colorectal cancer through the inhibition of IGF1R translation.


Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2.

  • Chen Wang‎ et al.
  • PloS one‎
  • 2015‎

A better understanding of the effects of human adipocytes on breast cancer cells may lead to the development of new treatment strategies. We explored the effects of adipocytes on the migration and invasion of breast cancer cells both in vitro and in vivo.


Use of FFPE-derived DNA in next generation sequencing: DNA extraction methods.

  • Samantha J McDonough‎ et al.
  • PloS one‎
  • 2019‎

Archival tissues represent a rich resource for clinical genomic studies, particularly when coupled with comprehensive medical records. Use of these in next generation sequencing (NGS) is a priority. Nine formalin-fixed paraffin-embedded (FFPE) DNA extraction methods were evaluated using twelve FFPE samples of varying tissue types. Quality assessment included total yield, percent dsDNA, fragment analysis and multiplex PCR. After assessment, three tissue types from four FFPE DNA methods were selected for NGS downstream evaluation, targeted and whole exome sequencing. In addition, two low input library protocols were evaluated for WES. Analysis revealed average coverage across the target regions for WES was ~20-30X for all four FFPE DNA extraction methods. For the targeted panels, the highest molecular tag coverage was obtained with the Kingfisher FFPE extraction method. The genotype concordance was 99% for the commonly called variant positions between all four extraction methods with the targeted PCR NGS panel and 96% with WES. Assessing quality of extracted DNA aids in selecting the optimal NGS approach, and the choice of both DNA extraction and library preparation approaches can impact the performance of archival tissue in NGS.


Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles.

  • Limin Li‎ et al.
  • PloS one‎
  • 2012‎

Cell-secreted miRNAs are highly stable and can serve as biomarkers for various diseases and signaling molecules in intercellular communication. The mechanism underlying the stability of circulating miRNAs, however, remains incompletely understood. Here we show that Argonaute 2 (Ago2) complexes and microvesicles (MVs) provide specific and non-specific protection for miRNA in cell-secreted MVs, respectively. First, the resistance of MV-encapsulated miRNAs to RNaseA was both depended on intact vesicular structure of MVs and protease-sensitive. Second, an immunoprecipitation assay using a probe complementary to human miR-16, a miRNA primarily located in the MVs and showed a strong, protease-sensitive resistance to RNaseA, identified Ago2 as a major miR-16-associated protein. Compared with protein-free miR-16, Ago2-associated miR-16 was resistant to RNaseA in a dose- and time-dependent fashion. Third, when the miR-16/Ago2 complex was disrupted by trypaflavine, the resistance of miR-16 to RNaseA was decreased. In contrast, when the association of miR-16 with the Ago2 complexes was increased during cell apoptosis, although the total amount of miR-16 and Ago2 remained unchanged, the resistance of miR-16 to RNaseA in the MVs was enhanced. A similar correlation between the increase of miR-223/Ago2 association and the resistance of miR-223 against RNaseA was observed during all trans retinoic acid (ATRA)-induced cell differentiation of promyelocytic HL60 cells. In conclusion, the association of miRNAs with Ago2 complexes, an event that is linked to cell functional status, plays a critical role in stabilizing the circulating miRNAs in cell-secreted MVs.


Protection against Th17 cells differentiation by an interleukin-23 receptor cytokine-binding homology region.

  • Wei Guo‎ et al.
  • PloS one‎
  • 2012‎

Th17 cells have been reported to produce proinflammatory cytokines like Interleukin-17, IL-22, and regarded as important players in various inflammatory diseases. One of the IL-12 cytokine family cytokines, IL-23, composed of p19 and p40 subunit, is known for its potential to promote Th17 development and IL-17 producing, and the IL-23/IL-17 pathway is considered to be potential therapeutic target for autoimmune inflammation responses. Knockout mice deficient in either IL-23 or IL-17 related genes can suppress the allergic responses. Several IL-23 or IL-17 neutralizing agents are being evaluated in vitro or in vivo to disrupt the IL-23/IL-17 axis. Herein, we report that prokaryotically expressed soluble IL-23 receptor cytokine-binding homology region as an endogenous extracellular receptor analogue could be a natural antagonist against IL-23/IL-17 axis. We provide evidence that IL23R-CHR can bind to IL-23 in a dose-dependent manner in vitro, and block IL-23 signal by IL23R-CHR reducing the RORγt expression, which in turn lowers the expression of IL-17/IL-22, thus protecting naive CD4+ T cells against Th17 development. Together, this study indicates the importance of IL-23 pathway in Th17 development and the negative regulation of Th17 development by IL23R-CHR, and highlights the important roles of the soluble receptor extracellular region in the therapeutic strategy of neutralizing IL-23.


Lin28a protects against hypoxia/reoxygenation induced cardiomyocytes apoptosis by alleviating mitochondrial dysfunction under high glucose/high fat conditions.

  • Mingming Zhang‎ et al.
  • PloS one‎
  • 2014‎

The aim of the present study was to investigate the role of Lin28a in protecting against hypoxia/reoxygenation (H/R)-induced cardiomyocytes apoptosis under high glucose/high fat (HG/HF) conditions.


Early-life exposure to bisphenol a induces liver injury in rats involvement of mitochondria-mediated apoptosis.

  • Wei Xia‎ et al.
  • PloS one‎
  • 2014‎

Exposure to bisphenol A (BPA), a monomer widely used to manufacture polycarbonate plastics, has been reported to be associated with abnormalities of liver function and hepatic damage. However, the molecular mechanism under the pathogenesis of hepatic injury is unclear. In this study, the effect of perinatal exposure to BPA at the reference dose of 50 µg/kg/day on the apoptotic index in the liver of rat offspring was investigated. Increased levels of ALT and enhanced cell apoptosis were observed in the liver of rat offspring at 15 and 21 weeks, and significantly increased activity of caspase-3 and caspase-9 and elevated levels of cytochrome c were also confirmed. In addition, significant change in the expression levels of Bcl-2 and Bax were found in BPA-treated offspring at 21 weeks. For in vitro experiments, liver mitochondria were isolated from neonatal rats and were treated with BPA. BPA treatment led to a significant increase in mitochondrial permeability transition. Moreover, the supernatant from BPA-treated mitochondria significantly increased apoptotic changes in nuclei isolated from liver tissue. In conclusion, the study demonstrates that BPA induces mitochondria-mediated apoptosis in hepatic cells, which may contribute to long-term hepatotoxicity induced by early-life exposure to BPA.


Large-scale ex vivo generation of human neutrophils from cord blood CD34+ cells.

  • Zhenwang Jie‎ et al.
  • PloS one‎
  • 2017‎

Conventional high-dose chemotherapy frequently leads to severe neutropenia, during which patients experience a high risk of infection. Although support care with donor's neutrophils is possible this choice is largely hampered by the limited availability of matched donors. To overcome this problem, we explored a large-scale ex vivo production of neutrophils from hematopoietic stem cells (HSCs) using a four-stage culture approach in a roller-bottle production platform. We expanded CD34+ HSCs isolated from umbilical cord blood (UCB) using our in-house special medium supplemented with cytokine cocktails and achieved about 49000-fold expansion of cells, among which about 61% were differentiated mature neutrophils. Ex vivo differentiated neutrophils exhibited a chemotactic activity similar to those from healthy donors and were capable of killing E. coli in vitro. The expansion yield as reported herein was at least 5 times higher than any other methods reported in the literature. Moreover, the cost of our modified medium was only a small fraction (<1/60) of the StemSpan™ SFEM. Therefore, our ex vivo expansion platform, coupled with a low cost of stem cell culture due to the use of a modified medium, makes large-scale manufacturing neutrophils possible, which should be able to greatly ameliorate neutrophil shortage for transfusion in the clinic.


Characterization of a novel panel of plasma microRNAs that discriminates between Mycobacterium tuberculosis infection and healthy individuals.

  • Jia-Yi Cui‎ et al.
  • PloS one‎
  • 2017‎

Cavities are important in clinical diagnosis of pulmonary tuberculosis (TB) infected by Mycobacterium tuberculosis. Although microRNAs (miRNAs) play a vital role in the regulation of inflammation, the relation between plasma miRNA and pulmonary tuberculosis with cavity remains unknown. In this study, plasma samples were derived from 89 cavitary pulmonary tuberculosis (CP-TB) patients, 89 non-cavitary pulmonary tuberculosis (NCP-TB) patients and 95 healthy controls. Groups were matched for age and gender. In the screening phase, Illumina high-throughput sequencing technology was employed to analyze miRNA profiles in plasma samples pooled from CP-TB patients, NCP-TB patients and healthy controls. During the training and verification phases, quantitative RT-PCR (qRT-PCR) was conducted to verify the differential expression of selected miRNAs among groups. Illumina high-throughput sequencing identified 29 differentially expressed plasma miRNAs in TB patients when compared to healthy controls. Furthermore, qRT-PCR analysis validated miR-769-5p, miR-320a and miR-22-3p as miRNAs that were differently present between TB patients and healthy controls. ROC curve analysis revealed that the potential of these 3 miRNAs to distinguish TB patients from healthy controls was high, with the area under the ROC curve (AUC) ranged from 0.692 to 0.970. Moreover, miR-320a levels were decreased in drug-resistant TB patients than pan-susceptible TB patients (AUC = 0.882). In conclusion, we identified miR-769-5p, miR-320a and miR-22-3p as potential blood-based biomarkers for TB. In addition, miR-320a may represent a biomarker for drug-resistant TB.


Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay.

  • Yuming Lu‎ et al.
  • PloS one‎
  • 2013‎

A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells.


Propofol inhibits the activation of p38 through up-regulating the expression of annexin A1 to exert its anti-inflammation effect.

  • Jing Tang‎ et al.
  • PloS one‎
  • 2011‎

Inflammatory response is a kind of nonspecific immune response, with the central link of vascular response, which is mainly manifested by changes in neutrophils and vascular endothelial cells. In recent years, the in vivo and in vitro role of intravenous anesthetic propofol in inhibiting inflammatory response has been attracting more and more attention, but the anti-inflammatory mechanisms of propofol for mononuclear cells still remain undefined. In this study, proteomics analysis was applied to investigate protein expression profile changes in serum mononuclear cells following intervention of rats with endotoxemia using propofol. After two-dimensional electrophoresis and mass spectrometric identification, it has been found that the protein Annexin A1 was up-regulated in the propofol intervention group. Annexin A1 is a glucocorticoid-dependent anti-inflammatory protein. After detection using ELISA and Western blot assays, it has also been found that propofol can not only promote the expression of Annexin A1, but also inhibit the phosphorylation level of p38 and release of inflammatory factors (IL-1β, IL-6 and TNF-α) in rats with endotoxemia. In order to further determine the role of up-regulated expression of Annexin A1 in anti-inflammation of propofol, this gene was silenced in vitro in human THP-1 cells, to detect the phosphorylation status of p38 and release of inflammatory factors. The results show that Annexin A1 can negatively regulate phosphorylation of p38 and release of IL-1β, IL-6 and TNF-α in THP-1 cells following propofol intervention and lipopolysaccharide (LPS) stimulation. Our results clearly indicate that propofol can up-regulate Annexin A1 to inhibit the phosphorylation level of p38 and release of IL-1β, IL-6 and TNF-α, so as to inhibit inflammatory response. Therefore, it can be speculated that Annexin A1 might be the key signaling protein in the in vivo and in vitro anti-inflammatory mechanisms of propofol.


Granulin exacerbates lupus nephritis via enhancing macrophage M2b polarization.

  • Xi Chen‎ et al.
  • PloS one‎
  • 2013‎

Lupus nephritis (LN), with considerable morbidity and mortality, is one of the most severe manifestations of systemic lupus erythematosus (SLE). Yet, the pathogenic mechanisms of LN have not been clearly elucidated, and efficient therapies are still in great need. Granulin (GRN), a multifunctional protein linked to inflammatory diseases, has recently been reported to correlate with the disease activity of autoimmune diseases. However, the role of GRN in the pathogenic process of LN still remains obscure. In this study, we explored its potential role and underlying mechanism in the pathogenesis of LN.


MiR-RACE, a new efficient approach to determine the precise sequences of computationally identified trifoliate orange (Poncirus trifoliata) microRNAs.

  • Changnian Song‎ et al.
  • PloS one‎
  • 2010‎

Among the hundreds of genes encoding miRNAs in plants reported, much more were predicted by numerous computational methods. However, unlike protein-coding genes defined by start and stop codons, the ends of miRNA molecules do not have characteristics that can be used to define the mature miRNAs exactly, which made computational miRNA prediction methods often cannot predict the accurate location of the mature miRNA in a precursor with nucleotide-level precision. To our knowledge, there haven't been reports about comprehensive strategies determining the precise sequences, especially two termini, of these miRNAs.


Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

  • Dan-Qing Liu‎ et al.
  • PloS one‎
  • 2008‎

Signal regulate protein alpha (SIRPalpha) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2) integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis.


WY7 is a newly identified promoter from the rubber powdery mildew pathogen that regulates exogenous gene expression in both monocots and dicots.

  • Yi Wang‎ et al.
  • PloS one‎
  • 2020‎

Promoters are very important for transcriptional regulation and gene expression, and have become invaluable tools for genetic engineering. Owing to the characteristics of obligate biotrophs, molecular research into obligate biotrophic fungi is seriously lagging behind, and very few of their endogenous promoters have been developed. In this study, a WY7 fragment was predicted in the genome of Oidium heveae Steinmann using PromoterScan. Its promoter function was verified with transient transformations (Agrobacterium tumefaciens-mediated transformation, ATMT) in Nicotiana tabacum cv. Xanthi nc. The analysis of the transcription range showed that WY7 could regulate GUS expression in both monocots (Zea mays Linn and Oryza sativa L. spp. Japonica cv. Nipponbare) and dicots (N. tabacum and Hylocereus undulates Britt). The results of the quantitative detection showed that the GUS transient expression levels when regulated by WY7 was more than 11.7 times that of the CaMV 35S promoter in dicots (N. tabacum) and 5.13 times that of the ACT1 promoter in monocots (O. sativa). GUS staining was not detected in the T1 generation of the WY7-GUS transgenic N. tabacum. This showed that WY7 is an inducible promoter. The cis elements of WY7 were predicted using PlantCARE, and further experiments indicated that WY7 was a low temperature- and salt-inducible promoter. Soluble proteins produced by WY7-hpa1Xoo transgenic tobacco elicited hypersensitive responses (HR) in N. tabacum leaves. N. tabacum transformed with pBI121-WY7-hpa1Xoo exhibited enhanced resistance to the tobacco mosaic virus (TMV). The WY7 promoter has a lot of potential as a tool for plant genetic engineering. Further in-depth studies will help to better understand the transcriptional regulation mechanisms of O. heveae.


Brain structure variability study in pilots based on VBM.

  • Kaijun Xu‎ et al.
  • PloS one‎
  • 2023‎

The impact of occupations on brain structures has attracted considerable research interests in the last decade. The aim of this research is to find the effect of flight training on brain gray matter volume of pilots. The whole-brain structural magnetic resonance imaging (sMRI) data collected from 26 pilots and 24 controls was analyzed using Voxel-based morphological analysis method (VBM) combined with T1 data to quantitatively detect the local gray matter of brain tissue and calculate the gray matter volume. The result shows that the pilot group has larger gray matter volume in the lingual gyrus and fusiform gyrus compared to the control group (P<0.05). Furthermore, there is a positive correlation between the gray matter volume and the number of flight hours (r = 0.426, P = 0.048) after studying the average gray matter volume value of the agglomerate of participants whose flight hours are between 0 and 1000 hours. The lingual gyrus and fusiform gyrus are involved in high-level visual processing, memory, multisensory integration and perception. The study has indicated the flight training could enlarge gray matter volume in the lingual gyrus and fusiform gyrus. During flying, pilots need to observe the instrumentation in the cockpit and fully interpret the readings, which may lead to the results.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: