Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,634 papers

Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer.

  • Juliet D French‎ et al.
  • Oncotarget‎
  • 2016‎

Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.


Effect of SIRT1 Gene on Epithelial-Mesenchymal Transition of Human Prostate Cancer PC-3 Cells.

  • Ying Cui‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2016‎

BACKGROUND The epithelial-mesenchymal transition (EMT) has been shown to be involved in the process of invasion and metastasis of prostate cancer. SIRT1 is the mammalian homologue of the silent information regulator 2 (Sir2) gene, and is abnormally expressed in prostate cancer cells. Therefore, it is hypothesized that SIRT1 mediates the invasion/metastatic ability of prostate cancer via EMT regulation. This study thus investigated the effect of SIRT1 gene on the invasion and migration of prostate cancer cell line PC-3 via the small interference RNA (siRNA) against SIRT1. MATERIAL AND METHODS SiRNA construct was transfected into PC-3 cells, which were tested for the cell migration and invasion ability by scratch assay and Transwell migration assay, respectively. Expression levels of vimentin, E-cadherin, and N-cadherin were further quantified by Western blotting and RT-PCR. RESULTS Both mRNA and protein levels of SIRT1 were depressed after siRNA transfection, along with weakened migration and invasion ability of PC-3 cells. Elevated E-cadherin and suppressed N-cadherin and vimentin were observed in those transfected cells. CONCLUSIONS The silencing of SIRT1 gene in PC-3 cells can suppress the movement, migration, and invasion functions of prostate cancer cells, possibly via the down-regulation of mesenchymal markers vimentin and N-cadherin accompanied with up-regulation of epithelial marker N-cadherin, thus reversing the EMT process.


No apparent transmission of transgenic α-synuclein into nigrostriatal dopaminergic neurons in multiple mouse models.

  • Namratha Sastry‎ et al.
  • Translational neurodegeneration‎
  • 2015‎

α-synuclein (α-syn) is the main component of intracytoplasmic inclusions deposited in the brains of patients with Parkinson's disease (PD) and certain other neurodegenerative disorders. Recent studies have explored the ability of α-syn to propagate between or across neighboring neurons and supposedly "infect" them with a prion-like mechanism. However, much of this research has used stereotaxic injections of heterologous α-syn fibrils to induce the spreading of inclusions in the rodent brains. Whether α-syn is able to transmit from the host cells to their neighboring cells in vivo is unclear.


High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation.

  • Yun-Hua Ma‎ et al.
  • Arthritis research & therapy‎
  • 2016‎

Recent studies found that the circulating high-mobility group box 1 (HMGB1) levels could reflect the disease activity of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). HMGB1 could prime neutrophils by increasing ANCA antigens translocation for ANCA-mediated respiratory burst and degranulation. The current study aimed to investigate whether HMGB1 participates in ANCA-induced neutrophil extracellular traps (NETs) formation, which is one of the most important pathogenic aspects in the development of AAV.


House dust mite extract induces growth factor expression in nasal mucosa by activating the PI3K/Akt/HIF-1α pathway.

  • Xi Chen‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Growing evidence suggests that hypoxia-inducible factor-α (HIF-1α) plays an important role in the progression of allergic airway inflammation and remodeling. However, the biochemical mechanisms leading to the activation of HIF-1α and the effects of HIF-1α on the expression of growth factors, including vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and fibroblast growth factor-2 (FGF-2), in allergic nasal inflammation are not clear. We examined the relationship between HIF-1α activation and production of VEGF, TGF-β1, and FGF-2 in primary cultured nasal epithelial cells (NECs) after stimulation with house dust mite (HDM) extract. Moreover, we evaluated the importance of phosphoinositide3-kinase(PI3K)/Akt signaling in HDM-induced production of these growth factors in vitro and in the nasal mucosa of a murine model of allergic rhinitis (AR). Our results indicate HDM extract induced the expression of VEGF, TGF-β1, and FGF-2 by activating the PI3K/Akt/HIF-1α pathway in human primary cultured NECs and in the nasal mucosa of a murine model. HIF-1α regulated the expression of VEGF, TGF-β1, and FGF-2 in the nasal mucosa through direct and indirect pathways, which suggested that targeting the HIF-1α pathway could be a novel therapeutic approach for reducing nasal airway inflammation and remodeling in AR.


Elevated Serum Uric Acid Is Associated with Greater Bone Mineral Density and Skeletal Muscle Mass in Middle-Aged and Older Adults.

  • Xiao-Wei Dong‎ et al.
  • PloS one‎
  • 2016‎

Previous studies have suggested a positive link between serum uric acid (UA) and bone mineral density (BMD). In this study, we re-examined the association between UA and BMD and further explored whether this was mediated by skeletal muscle mass in a general Chinese population.


ZSTK474, a specific class I phosphatidylinositol 3-kinase inhibitor, induces G1 arrest and autophagy in human breast cancer MCF-7 cells.

  • Yaochen Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Multifaceted activities of class I phosphatidylinositol 3-kinase (PI3K) inhibitor ZSTK474 were investigated on human breast cancer cell MCF-7. ZSTK474 inhibited proliferation of MCF-7 cells potently. Flow cytometric analysis indicated that ZSTK474 induced cell cycle arrest at G1 phase, but no obvious apoptosis occurred. Western blot analysis suggested that blockade of PI3K/Akt/GSK-3β/cyclin D1/p-Rb pathway might contribute to the G1 arrest induced. Moreover, we demonstrated that ZSTK474 induced autophagy in MCF-7 cells by use of various assays including monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), tandem mRFP-GFP-LC3 fluorescence microscopy, and western blot detection of the autophagy protein markers of LC3B II, p62 and Atg 5. Inhibition of class I PI3K and the downstream mTOR might be involved in the autophagy-inducing effect. Combinational use of ZSTK474 and autophagy inhibitors enhanced cell viability, suggesting ZSTK474-induced autophagy might contribute to the antitumor activity. Our report supports the application of ZSTK474, which is being evaluated in clinical trials, for breast cancer therapy.


Decreased Bone Mineral Density Is an Independent Predictor for the Development of Atherosclerosis: A Systematic Review and Meta-Analysis.

  • Chenyi Ye‎ et al.
  • PloS one‎
  • 2016‎

There is conflicting evidence regarding the association between decreased bone mineral density (BMD) and atherosclerosis. To this end, we performed a systematic review and meta-analysis to clarify the association.


Effect of Candida albicans on Intestinal Ischemia-reperfusion Injury in Rats.

  • Lei Yan‎ et al.
  • Chinese medical journal‎
  • 2016‎

Inflammation is supposed to play a key role in the pathophysiological processes of intestinal ischemia-reperfusion injury (IIRI), and Candida albicans in human gut commonly elevates inflammatory cytokines in intestinal mucosa. This study aimed to explore the effect of C. albicans on IIRI.


Role of high expression levels of STK39 in the growth, migration and invasion of non-small cell type lung cancer cells.

  • Zhao Li‎ et al.
  • Oncotarget‎
  • 2016‎

Non-small cell type lung cancer (NSCLC) is the most common malignancy and the leading cause of cancer related mortality. In this study, serine/threonine kinase 39 (STK39) was identified as an up-regulated gene in NSCLC tissues by next-generation RNA sequencing. Although STK39 gene polymorphisms may be prognostic of overall survival in patients with early stage NSCLC, the roles of STK39 in NSCLC cancer are poorly understood. In the current study, Genome Set Enrichment Analysis (GSEA) on the RNA-seq data of NSCLC specimens indicated that cancer-related process and pathways, including metastasis, cell cycle, apoptosis and p38 pathway, were significantly correlated with STK39 expression. STK39 expression was significantly increased in NSCLC cases and its protein expression was positively correlated with the poor tumor stage, large tumor size, advanced lymphnode metastasis and poor prognosis. Down-regulation of STK39 in NSCLC cells significantly decreased cell proliferation by blocking of cell cycle and inducing apoptosis. We also found that STK39 knockdown in NSCLC cells remarkably repressed cell migration and invasion. On the contrary, overexpression of STK39 in NSCLC cells had inverse effects on cell behaviors. Taken together, STK39 acts as a tumor oncogene in NSCLC and can be a potential biomarker of carcinogenesis.


Forkhead containing transcription factor Albino controls tetrapyrrole-based body pigmentation in planarian.

  • Chen Wang‎ et al.
  • Cell discovery‎
  • 2016‎

Pigmentation processes occur from invertebrates to mammals. Owing to the complexity of the pigmentary system, in vivo animal models for pigmentation study are limited. Planarians are capable of regenerating any missing part including the dark-brown pigments, providing a promising model for pigmentation study. However, the molecular mechanism of planarian body pigmentation is poorly understood. We found in an RNA interference screen that a forkhead containing transcription factor, Albino, was required for pigmentation without affecting survival or other regeneration processes. In addition, the body color recovered after termination of Albino double stranded RNA feeding owing to the robust stem cell system. Further expression analysis revealed a spatial and temporal correlation between Albino and pigmentation process. Gene expression arrays revealed that the expression of three tetrapyrrole biosynthesis enzymes, ALAD, ALAS and PBGD, was impaired upon Albino RNA interference. RNA interference of PBGD led to a similar albinism phenotype caused by Albino RNA interference. Moreover, PBGD was specifically expressed in pigment cells and can serve as a pigment cell molecular marker. Our results revealed that Albino controls planarian body color pigmentation dominantly via regulating tetrapyrrole biogenesis. These results identified Albino as the key regulator of the tetrapyrrole-based planarian body pigmentation, suggesting a role of Albino during stem cell-pigment cell fate decision and provided new insights into porphyria pathogenesis.


Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells.

  • Xi Chen‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Quercetin, a natural flavonoid, inhibits the growth of leukemia cells and induces apoptosis. Heat shock protein 27 (HSP27) has been reported to promote the development of leukemia by protecting tumor cells from apoptosis through various mechanisms. The present study investigated the effects of small hairpin (sh)RNA-mediated HSP27 knockdown on the anti‑cancer effects of quercetin in U937 human leukemia cells. Cells were transfected with recombinant lentiviral vector pCMV‑G‑NR‑U6‑shHSP27 (shHSP27), which expressed shRNA specifically targeting the HSP27 gene, alone or in combination with quercetin. The results showed that shHSP27 and quercetin synergistically inhibited U937 cell proliferation and induced apoptosis by decreasing the Bcl2-to-Bax ratio. Furthermore, this combined treatment significantly suppressed the infiltration of tumor cells and the expression of angiogenesis‑associated proteins HIF1α and VEGF. Compared with shHSP27 or quercetin alone, shHSP27 plus quercetin markedly decreased the protein expression of cyclinD1 and thus blocked the cell cycle at G1 phase. The Notch/AKT/mTOR signaling pathway is important in tumor aggressiveness; quercetin plus shHSP27 significantly decreased Notch 1 expression and the phosphorylation levels of the downstream signaling proteins AKT and mTOR. The inhibitory effects of quercetin plus shHSP27 on this pathway may thus have been responsible for the cell cycle arrest, inhibition of proliferations and infiltration as well as enhancement of apoptosis. Therefore, these findings collectively suggested that suppression of HSP27 expression amplified the anti‑cancer effects of quercetin in U937 human leukemia cells, and that quercetin in combination with shHSP27 represents a promising therapeutic strategy for human leukemia.


EglN2 associates with the NRF1-PGC1α complex and controls mitochondrial function in breast cancer.

  • Jing Zhang‎ et al.
  • The EMBO journal‎
  • 2015‎

The EglN2/PHD1 prolyl hydroxylase is an important oxygen sensor contributing to breast tumorigenesis. Emerging studies suggest that there is functional cross talk between oxygen sensing and mitochondrial function, both of which play an essential role for sustained tumor growth. However, the potential link between EglN2 and mitochondrial function remains largely undefined. Here, we show that EglN2 depletion decreases mitochondrial respiration in breast cancer under normoxia and hypoxia, which correlates with decreased mitochondrial DNA in a HIF1/2α-independent manner. Integrative analyses of gene expression profile and genomewide binding of EglN2 under hypoxic conditions reveal nuclear respiratory factor 1 (NRF1) motif enrichment in EglN2-activated genes, suggesting NRF1 as an EglN2 binding partner. Mechanistically, by forming an activator complex with PGC1α and NRF1 on chromatin, EglN2 promotes the transcription of ferridoxin reductase (FDXR) and maintains mitochondrial function. In addition, FDXR, as one of effectors for EglN2, contributes to breast tumorigenesis in vitro and in vivo. Our findings suggest that EglN2 regulates mitochondrial function in ERα-positive breast cancer.


Oncogenic miR-9 is a target of erlotinib in NSCLCs.

  • Xi Chen‎ et al.
  • Scientific reports‎
  • 2015‎

EGFR-targeted cancer therapy is a breakthrough in non-small cell carcinoma. miRNAs have been proved to play important roles in cancer. Currently, for the role of miRNAs in EGFR-targeted cancer therapy is unclear. In this study, first we found that erlotinib reduced the expression of miR-9. MiR-9 expression was increased in human lung cancer tissues compared with peripheral normal tissues, and miR-9 promoted the growth of NSCLC cells. Overexpression of miR-9 decreased the growth inhibitory effect of erlotinib. Second, miR-9 decreased FoxO1 expression by directly inhibition of its mRNA translation. Adenovirus-mediated overexpression of FoxO1 or siRNA-mediated downregulation of FoxO1 negatively regulated cell growth. And exogenous overexpression FoxO1 reduced the pro-growth effect of miR-9. Finally, we found that erlotinib upregulated FoxO1 protein expression. Moreover, overexpression of miR-9 decreased erlotinib-induced FoxO1 expression, and overexpression of FoxO1 enhanced the growth inhibitory effects of erlotinib. Additionally, we found that erlotinib downregulates miR-9 expression through suppressing the transcrption of miR-9-1 and enhanced DNA methylation maybe involved. These findings suggest that oncogenic miR-9 targeted FoxO1 to promote cell growth, and downregulation of this axis was involved in erlotinib's growth inhibitory effects. Clarifying the regulation of miRNAs by erlotinib may indicate novel strategies for enhancing EGFR-targeted cancer therapy.


HIV Drug Resistance Mutations (DRMs) Detected by Deep Sequencing in Virologic Failure Subjects on Therapy from Hunan Province, China.

  • Xi Chen‎ et al.
  • PloS one‎
  • 2016‎

Determine HIV drug resistance mutations (DRMs) prevalence at low and high levels in ART-experienced patients experiencing virologic failure (VF).


Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo.

  • Zhengyu Jiang‎ et al.
  • Oncotarget‎
  • 2016‎

Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1-6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo.


Organic nitrogen uptake is a significant contributor to nitrogen economy of subtropical epiphytic bryophytes.

  • Liang Song‎ et al.
  • Scientific reports‎
  • 2016‎

Without any root contact with the soil, epiphytic bryophytes must experience and explore poor, patchy, and heterogeneous habitats; while, the nitrogen (N) uptake and use strategies of these organisms remain uncharacterized, which obscures their roles in the N cycle. To investigate the N sources, N preferences, and responses to enhanced N deposition in epiphytic bryophytes, we carried out an in situ manipulation experiment via the (15)N labelling technique in an Asian cloud forest. Epiphytic bryophytes obtained more N from air deposition than from the bark, but the contribution of N from the bark was non-negligible. Glycine accounted for 28.4% to 44.5% of the total N in bryophyte tissue, which implies that organic N might serve as an important N source. Increased N deposition increased the total N uptake, but did not alter the N preference of the epiphytic bryophytes. This study provides sound evidence that epiphytic bryophytes could take up N from the bark and wet deposition in both organic and inorganic N forms. It is thus important to consider organic N and bark N sources, which were usually neglected, when estimating the role of epiphytic bryophytes in N cycling and the impacts of N deposition on epiphytic bryophytes in cloud forests.


Histone acetylation is involved in TCDD‑induced cleft palate formation in fetal mice.

  • Xingang Yuan‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The aim of the present was to evaluate the effects of DNA methylation and histone acetylation on 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (TCDD)‑induced cleft palate in fetal mice. Pregnant mice (n=10) were randomly divided into two groups: i) TCDD group, mice were treated with 28 µg/kg TCDD on gestation day (GD) 10 by oral gavage; ii) control group, mice were treated with an equal volume of corn oil. On GD 16.5, the fetal mice were evaluated for the presence of a cleft palate. An additional 36 pregnant mice were divided into the control and TCDD groups, and palate samples were collected on GD 13.5, GD 14.5 and GD 15.5, respectively. Transforming growth factor‑β3 (TGF‑β3) mRNA expression, TGF‑β3 promoter methylation, histone acetyltransferase (HAT) activity and histone H3 (H3) acetylation in the palates were evaluated in the two groups. The incidence of a cleft palate in the TCDD group was 93.55%, and no cases of cleft palate were identified in the control group. On GD 13.5 and GD 14.5, TGF‑β3 mRNA expression, HAT activity and acetylated H3 levels were significantly increased in the TCDD group compared with the control. Methylated bands were not observed in the TCDD or control groups. In conclusion, at the critical period of palate fusion (GD 13.5‑14.5), TCDD significantly increased TGF‑β3 gene expression, HAT activity and H3 acetylation. Therefore, histone acetylation may be involved in TCDD‑induced cleft palate formation in fetal mice.


Genome-wide association study identifies 8p21.3 associated with persistent hepatitis B virus infection among Chinese.

  • Yuanfeng Li‎ et al.
  • Nature communications‎
  • 2016‎

Hepatitis B virus (HBV) infection is a common infectious disease. Here we perform a genome-wide association study (GWAS) among Chinese populations to identify novel genetic loci involved in persistent HBV infection. GWAS scan is performed in 1,251 persistently HBV infected subjects (PIs, cases) and 1,057 spontaneously recovered subjects (SRs, controls), followed by replications in four independent populations totally consisting of 3,905 PIs and 3,356 SRs. We identify a novel locus at 8p21.3 (index rs7000921, odds ratio=0.78, P=3.2 × 10(-12)). Furthermore, we identify significant expression quantitative trait locus associations for INTS10 gene at 8p21.3. We demonstrate that INST10 suppresses HBV replication via IRF3 in liver cells. In clinical plasma samples, we confirm that INST10 levels are significantly decreased in PIs compared with SRs, and negatively correlated with the HBV load. These findings highlight a novel antiviral gene INTS10 at 8p21.3 in the clearance of HBV infection.


Similar Responses of Circulating MicroRNAs to Acute High-Intensity Interval Exercise and Vigorous-Intensity Continuous Exercise.

  • Shu F Cui‎ et al.
  • Frontiers in physiology‎
  • 2016‎

High-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than low-to-moderate exercise intensity. Recently, it is becoming increasingly evident that circulating miRNAs (c-miRNAs) may distinguish between specific stress signals imposed by variations in the duration, modality, and type of exercise. The aim of this study is to investigate whether or not HIIE is superior to vigorous-intensity continuous exercise (VICE), which is contributing to develop effective fitness assessment. Twenty-six young males were enrolled, and plasma samples were collected prior to exercise and immediately after HIIE or distance-matched VICE. The miRNA level profiles in HIIE were initially determined using TaqMan Low Density Array (TLDA). And the differentially miRNAs levels were validated by stem-loop quantitative reverse-transcription PCR (RT-qPCR). Furthermore, these selective c-miRNAs were measured for VICE. Our results showed that some muscle-related miRNAs levels in the plasma, such as miR-1, miR-133a, miR-133b, and miR-206 significantly increased following HIIE or VICE compared to those at rest (P < 0.05), and there was only a significant reduction in miR-1 level for HIIE compared to VICE (P < 0.05), while no significant differences were observed for other muscle-related miRNAs between both exercises (P > 0.05). In addition, some tissue-related or unknown original miRNA levels, such as miR-485-5p, miR-509-5p, miR-517a, miR-518f, miR-520f, miR-522, miR-553, and miR-888, also significantly increased (P < 0.05) in both exercises compared to rest. However, no significant differences were found between both exercises (P > 0.05). Overall, endurance exercise assessed in this study both led to significant increases in selective c-miRNAs of comparable magnitude, suggesting that both types of endurance exercise have general stress processes. Accordingly, the similar responses to both acute exercises likely indicate both exercises can be used interchangeably. Further work is needed to reveal the functional significance and signaling mechanisms behind changes in c-miRNA turnover during exercise.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: