Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 93 papers

miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma.

  • Fotini M Kouri‎ et al.
  • Genes & development‎
  • 2015‎

Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM.


Antitumor effects of pharmacological EZH2 inhibition on malignant peripheral nerve sheath tumor through the miR-30a and KPNB1 pathway.

  • Pingyu Zhang‎ et al.
  • Molecular cancer‎
  • 2015‎

Enhancer of zeste homolog 2 (EZH2) is a key epigenetic regulator in cancer cell survival, epithelial-mesenchymal transition, and tumorigenesis. Inhibition of EZH2 has become a promising therapeutic option for various human malignancies. Previously, we demonstrated that the EZH2/miR-30d/karyopherin (importin) beta 1 (KPNB1) signaling pathway is critical for malignant peripheral nerve sheath tumor (MPNST) cell survival in vitro and for tumorigenesis in vivo. Here, we sought to determine the antitumor effects of pharmacological inhibition of EZH2 on MPNST in vitro and in vivo.


Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set.

  • Jason Roszik‎ et al.
  • BMC medicine‎
  • 2016‎

While clinical outcomes following immunotherapy have shown an association with tumor mutation load using whole exome sequencing (WES), its clinical applicability is currently limited by cost and bioinformatics requirements.


Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer.

  • Jian Hu‎ et al.
  • Cell‎
  • 2012‎

To assess telomerase as a cancer therapeutic target and determine adaptive mechanisms to telomerase inhibition, we modeled telomerase reactivation and subsequent extinction in T cell lymphomas arising in Atm(-/-) mice engineered with an inducible telomerase reverse transcriptase allele. Telomerase reactivation in the setting of telomere dysfunction enabled full malignant progression with alleviation of telomere dysfunction-induced checkpoints. These cancers possessed copy number alterations targeting key loci in human T cell lymphomagenesis. Upon telomerase extinction, tumor growth eventually slowed with reinstatement of telomere dysfunction-induced checkpoints, yet growth subsequently resumed as tumors acquired alternative lengthening of telomeres (ALT) and aberrant transcriptional networks centering on mitochondrial biology and oxidative defense. ALT+ tumors acquired amplification/overexpression of PGC-1β, a master regulator of mitochondrial biogenesis and function, and they showed marked sensitivity to PGC-1β or SOD2 knockdown. Genetic modeling of telomerase extinction reveals vulnerabilities that motivate coincidental inhibition of mitochondrial maintenance and oxidative defense mechanisms to enhance antitelomerase cancer therapy.


Cross species genomic analysis identifies a mouse model as undifferentiated pleomorphic sarcoma/malignant fibrous histiocytoma.

  • Jeffrey K Mito‎ et al.
  • PloS one‎
  • 2009‎

Undifferentiated pleomorphic sarcoma/Malignant Fibrous Histiocytoma (MFH) is one of the most common subtypes of human soft tissue sarcoma. Using cross species genomic analysis, we define a geneset from the LSL-Kras(G12D); Trp53(Flox/Flox) mouse model of soft tissue sarcoma that is highly enriched in human MFH. With this mouse geneset as a filter, we identify expression of the RAS target FOXM1 in human MFH. Expression of Foxm1 is elevated in mouse sarcomas that metastasize to the lung and tissue microarray analysis of human MFH correlates overexpression of FOXM1 with metastasis. These results suggest that genomic alterations present in human MFH are conserved in the LSL-Kras(G12D); p53(Flox/Flox) mouse model of soft tissue sarcoma and demonstrate the utility of this pre-clinical model.


Genomic profiling of dedifferentiated liposarcoma compared to matched well-differentiated liposarcoma reveals higher genomic complexity and a common origin.

  • Hannah C Beird‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2018‎

Well-differentiated (WD) liposarcoma is a low-grade mesenchymal tumor with features of mature adipocytes and high propensity for local recurrence. Often, WD patients present with or later progress to a higher-grade nonlipogenic form known as dedifferentiated (DD) liposarcoma. These DD tumors behave more aggressively and can metastasize. Both WD and DD liposarcomas harbor neochromosomes formed from amplifications and rearrangements of Chr 12q that encode oncogenes (MDM2, CDK4, and YEATS2) and adipocytic differentiation factors (HMGA2 and CPM) However, genomic changes associated with progression from WD to DD have not been well-defined. Therefore, we selected patients with matched WD and DD tumors for extensive genomic profiling in order to understand their clonal relationships and to delineate any defining alterations for each entity. Exome and transcriptomic sequencing was performed for 17 patients with both WD and DD diagnoses. Somatic point and copy-number alterations were integrated with transcriptional analyses to determine subtype-associated genomic features and pathways. The results were, on average, that only 8.3% of somatic mutations in WD liposarcoma were shared with their cognate DD component. DD tumors had higher numbers of somatic copy-number losses, amplifications involving Chr 12q, and fusion transcripts than WD tumors. HMGA2 and CPM rearrangements occur more frequently in DD components. The shared somatic mutations indicate a clonal origin for matched WD and DD tumors and show early divergence with ongoing genomic instability due to continual generation and selection of neochromosomes. Stochastic generation and subsequent expression of fusion transcripts from the neochromosome that involve adipogenesis genes such as HMGA2 and CPM may influence the differentiation state of the subsequent tumor.


Genomic and Functional Approaches to Understanding Cancer Aneuploidy.

  • Alison M Taylor‎ et al.
  • Cancer cell‎
  • 2018‎

Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy.


Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer.

  • Katherine A Hoadley‎ et al.
  • Cell‎
  • 2018‎

We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.


Oncogenic Signaling Pathways in The Cancer Genome Atlas.

  • Francisco Sanchez-Vega‎ et al.
  • Cell‎
  • 2018‎

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.

  • Tathiane M Malta‎ et al.
  • Cell‎
  • 2018‎

Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation.


Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma.

  • A Gordon Robertson‎ et al.
  • Cancer cell‎
  • 2017‎

Comprehensive multiplatform analysis of 80 uveal melanomas (UM) identifies four molecularly distinct, clinically relevant subtypes: two associated with poor-prognosis monosomy 3 (M3) and two with better-prognosis disomy 3 (D3). We show that BAP1 loss follows M3 occurrence and correlates with a global DNA methylation state that is distinct from D3-UM. Poor-prognosis M3-UM divide into subsets with divergent genomic aberrations, transcriptional features, and clinical outcomes. We report change-of-function SRSF2 mutations. Within D3-UM, EIF1AX- and SRSF2/SF3B1-mutant tumors have distinct somatic copy number alterations and DNA methylation profiles, providing insight into the biology of these low- versus intermediate-risk clinical mutation subtypes.


Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma.

  • Alexandre Reuben‎ et al.
  • NPJ genomic medicine‎
  • 2017‎

Appreciation for genomic and immune heterogeneity in cancer has grown though the relationship of these factors to treatment response has not been thoroughly elucidated. To better understand this, we studied a large cohort of melanoma patients treated with targeted therapy or immune checkpoint blockade (n = 60). Heterogeneity in therapeutic responses via radiologic assessment was observed in the majority of patients. Synchronous melanoma metastases were analyzed via deep genomic and immune profiling, and revealed substantial genomic and immune heterogeneity in all patients studied, with considerable diversity in T cell frequency, and few shared T cell clones (<8% on average) across the cohort. Variables related to treatment response were identified via these approaches and through novel radiomic assessment. These data yield insight into differential therapeutic responses to targeted therapy and immune checkpoint blockade in melanoma, and have key translational implications in the age of precision medicine.


Diagnostic Value of TLE1 in Synovial Sarcoma: A Systematic Review and Meta-Analysis.

  • Marc El Beaino‎ et al.
  • Sarcoma‎
  • 2020‎

Synovial sarcoma can present morphologically in multiple forms, including biphasic and monophasic subtypes. As a result, the histological diagnosis can sometimes be challenging. Transducin-Like Enhancer 1 (TLE1) is a transcriptional corepressor that normally is involved in embryogenesis and hematopoiesis but is also expressed in certain tumors. This systematic review examines the potential role of TLE1 as a diagnostic biomarker for the synovial sarcoma. Materials and Methods. A literature review and meta-analysis were conducted using the electronic databases Pubmed, the Cochrane Library, and Google Scholar. Thirteen studies met our eligibility criteria and were selected for in-depth analysis.


IGF-1R/mTOR Targeted Therapy for Ewing Sarcoma: A Meta-Analysis of Five IGF-1R-Related Trials Matched to Proteomic and Radiologic Predictive Biomarkers.

  • Hesham M Amin‎ et al.
  • Cancers‎
  • 2020‎

Background : Ten to fourteen percent of Ewing sarcoma (ES) study participants treated nationwide with IGF-1 receptor (IGF-1R)-targeted antibodies achieved tumor regression. Despite this success, low response rates and short response durations (approximately 7-weeks) have slowed the development of this therapy. Methods: We performed a meta-analysis of five phase-1b/2 ES-oriented trials that evaluated the anticancer activity of IGF-1R antibodies +/- mTOR inhibitors (mTORi). Our meta-analysis provided a head-to-head comparison of the clinical benefits of IGF-1R antibodies vs. the IGF-1R/mTOR-targeted combination. Available pretreatment clinical samples were semi-quantitatively scored using immunohistochemistry to detect proteins in the IGF-1R/PI3K/AKT/mTOR pathway linked to clinical response. Early PET/CT imaging, obtained within the first 2 weeks (median 10 days), were examined to determine if reduced FDG avidity was predictive of progression-free survival (PFS). Results: Among 56 ES patients treated at MD Anderson Cancer Center (MDACC) with IGF-1R antibodies, our analysis revealed a significant ~two-fold improvement in PFS that favored a combination of IGF-1R/mTORi therapy (1.6 vs. 3.3-months, p = 0.042). Low pIGF-1R in the pretreatment specimens was associated with treatment response. Reduced total-lesion glycolysis more accurately predicted the IGF-1R response than other previously reported radiological biomarkers. Conclusion: Synergistic drug combinations, and newly identified proteomic or radiological biomarkers of IGF-1R response, may be incorporated into future IGF-1R-related trials to improve the response rate in ES patients.


Clinical, molecular, metabolic, and immune features associated with oxidative phosphorylation in melanoma brain metastases.

  • Grant M Fischer‎ et al.
  • Neuro-oncology advances‎
  • 2021‎

Recently, we showed that melanoma brain metastases (MBMs) are characterized by increased utilization of the oxidative phosphorylation (OXPHOS) metabolic pathway compared to melanoma extracranial metastases (ECMs). MBM growth was inhibited by a potent direct OXPHOS inhibitor, but observed toxicities support the need to identify alternative therapeutic strategies. Thus, we explored the features associated with OXPHOS to improve our understanding of the pathogenesis and potential therapeutic vulnerabilities of MBMs.


Prognostic relevance of the hexosamine biosynthesis pathway activation in leiomyosarcoma.

  • Angela Tolwani‎ et al.
  • NPJ genomic medicine‎
  • 2021‎

Metabolic reprogramming of tumor cells and the increase of glucose uptake is one of the hallmarks of cancer. In order to identify metabolic pathways activated in leiomyosarcoma (LMS), we analyzed transcriptomic profiles of distinct subtypes of LMS in several datasets. Primary, recurrent and metastatic tumors in the subtype 2 of LMS showed consistent enrichment of genes involved in hexosamine biosynthesis pathway (HBP). We demonstrated that glutamine-fructose-6-phosphate transaminase 2 (GFPT2), the rate-limiting enzyme in HBP, is expressed on protein level in a subset of LMS and the expression of this enzyme is frequently retained in patient-matched primary and metastatic tumors. In a new independent cohort of 327 patients, we showed that GFPT2 is associated with poor outcome of uterine LMS but not extra-uterine LMS. Based on the analysis of a small group of patients studied by 18F-FDG-PET imaging, we propose that strong expression of GFPT2 in primary LMS may be associated with high metabolic activity. Our data suggest that HBP is a potential new therapeutic target in one of the subtypes of LMS.


Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness.

  • Yize Li‎ et al.
  • Cancer cell‎
  • 2023‎

Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.


Arabidopsis DXO1 activates RNMT1 to methylate the mRNA guanosine cap.

  • Chen Xiao‎ et al.
  • Nature communications‎
  • 2023‎

Eukaryotic messenger RNA (mRNA) typically contains a methylated guanosine (m7G) cap, which mediates major steps of mRNA metabolism. Recently, some RNAs in both prokaryotic and eukaryotic organisms have been found to carry a non-canonical cap such as the NAD cap. Here we report that Arabidopsis DXO family protein AtDXO1, which was previously known to be a decapping enzyme for NAD-capped RNAs (NAD-RNA), is an essential component for m7G capping. AtDXO1 associates with and activates RNA guanosine-7 methyltransferase (AtRNMT1) to catalyze conversion of the guanosine cap to the m7G cap. AtRNMT1 is an essential gene. Partial loss-of-function mutations of AtRNMT1 and knockout mutation of AtDXO1 reduce m7G-capped mRNA but increase G-capped mRNAs, leading to similar pleiotropic phenotypes, whereas overexpression of AtRNMT1 partially restores the atdxo1 phenotypes. This work reveals an important mechanism in m7G capping in plants by which the NAD-RNA decapping enzyme AtDXO1 is required for efficient guanosine cap methylation.


Comprehensive Surfaceome Profiling to Identify and Validate Novel Cell-Surface Targets in Osteosarcoma.

  • Yifei Wang‎ et al.
  • Molecular cancer therapeutics‎
  • 2022‎

Immunoconjugates targeting cell-surface antigens have demonstrated clinical activity to enable regulatory approval in several solid and hematologic malignancies. We hypothesize that a rigorous and comprehensive surfaceome profiling approach to identify osteosarcoma-specific cell-surface antigens can similarly enable development of effective therapeutics in this disease. Herein, we describe an integrated proteomic and transcriptomic surfaceome profiling approach to identify cell-surface proteins that are highly expressed in osteosarcoma but minimally expressed on normal tissues. Using this approach, we identified targets that are highly expressed in osteosarcoma. Three targets, MT1-MMP, CD276, and MRC2, were validated as overexpressed in osteosarcoma. Furthermore, we tested BT1769, an MT1-MMP-targeted Bicycle toxin conjugate, in osteosarcoma patient-derived xenograft models. The results showed that BT1769 had encouraging antitumor activity, high affinity for its target, and a favorable pharmacokinetic profile. This confirms the hypothesis that our approach identifies novel targets with significant therapeutic potential in osteosarcoma.


Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in Braf-mutated melanoma.

  • Michael G White‎ et al.
  • Oncoimmunology‎
  • 2021‎

Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (>4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf-mutant murine melanoma model (BrafV600E/Pten-/- ). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: