Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

Variation in sleep and metabolic function is associated with latitude and average temperature in Drosophila melanogaster.

  • Elizabeth B Brown‎ et al.
  • Ecology and evolution‎
  • 2018‎

Regulation of sleep and metabolic homeostasis is critical to an animal's survival and under stringent evolutionary pressure. Animals display remarkable diversity in sleep and metabolic phenotypes; however, an understanding of the ecological forces that select for, and maintain, these phenotypic differences remains poorly understood. The fruit fly, Drosophila melanogaster, is a powerful model for investigating the genetic regulation of sleep and metabolic function, and screening in inbred fly lines has led to the identification of novel genetic regulators of sleep. Nevertheless, little is known about the contributions of naturally occurring genetic differences to sleep, metabolic phenotypes, and their relationship with geographic or environmental gradients. Here, we quantified sleep and metabolic phenotypes in 24 D. melanogaster populations collected from diverse geographic localities. These studies reveal remarkable variation in sleep, starvation resistance, and energy stores. We found that increased sleep duration is associated with proximity to the equator and elevated average annual temperature, suggesting that environmental gradients strongly influence natural variation in sleep. Further, we found variation in metabolic regulation of sleep to be associated with free glucose levels, while starvation resistance associates with glycogen and triglyceride stores. Taken together, these findings reveal robust naturally occurring variation in sleep and metabolic traits in D. melanogaster, providing a model to investigate how evolutionary and ecological history modulate these complex traits.


Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment.

  • Alex C Keene‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2011‎

Visual organs perceive environmental stimuli required for rapid initiation of behaviors and can also entrain the circadian clock. The larval eye of Drosophila is capable of both functions. Each eye contains only 12 photoreceptors (PRs), which can be subdivided into two subtypes. Four PRs express blue-sensitive rhodopsin5 (rh5) and eight express green-sensitive rhodopsin6 (rh6). We found that either PR-subtype is sufficient to entrain the molecular clock by light, while only the Rh5-PR subtype is essential for light avoidance. Acetylcholine released from PRs confers both functions. Both subtypes of larval PRs innervate the main circadian pacemaker neurons of the larva, the neuropeptide PDF (pigment-dispersing factor)-expressing lateral neurons (LNs), providing sensory input to control circadian rhythms. However, we show that PDF-expressing LNs are dispensable for light avoidance, and a distinct set of three clock neurons is required. Thus we have identified distinct sensory and central circuitry regulating light avoidance behavior and clock entrainment. Our findings provide insights into the coding of sensory information for distinct behavioral functions and the underlying molecular and neuronal circuitry.


A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function.

  • G Gregory Neely‎ et al.
  • Cell‎
  • 2010‎

Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.


Hypocretin underlies the evolution of sleep loss in the Mexican cavefish.

  • James B Jaggard‎ et al.
  • eLife‎
  • 2018‎

The duration of sleep varies dramatically between species, yet little is known about the genetic basis or evolutionary factors driving this variation in behavior. The Mexican cavefish, Astyanax mexicanus, exists as surface populations that inhabit rivers, and multiple cave populations with convergent evolution on sleep loss. The number of Hypocretin/Orexin (HCRT)-positive hypothalamic neurons is increased significantly in cavefish, and HCRT is upregulated at both the transcript and protein levels. Pharmacological or genetic inhibition of HCRT signaling increases sleep in cavefish, suggesting enhanced HCRT signaling underlies the evolution of sleep loss. Ablation of the lateral line or starvation, manipulations that selectively promote sleep in cavefish, inhibit hcrt expression in cavefish while having little effect on surface fish. These findings provide the first evidence of genetic and neuronal changes that contribute to the evolution of sleep loss, and support a conserved role for HCRT in sleep regulation.


AANAT1 functions in astrocytes to regulate sleep homeostasis.

  • Sejal Davla‎ et al.
  • eLife‎
  • 2020‎

How the brain controls the need and acquisition of recovery sleep after prolonged wakefulness is an important issue in sleep research. The monoamines serotonin and dopamine are key regulators of sleep in mammals and in Drosophila. We found that the enzyme arylalkylamine N-acetyltransferase 1 (AANAT1) is expressed by Drosophila astrocytes and specific subsets of neurons in the adult brain. AANAT1 acetylates monoamines and inactivates them, and we found that AANAT1 limited the accumulation of serotonin and dopamine in the brain upon sleep deprivation (SD). Loss of AANAT1 from astrocytes, but not from neurons, caused flies to increase their daytime recovery sleep following overnight SD. Together, these findings demonstrate a crucial role for AANAT1 and astrocytes in the regulation of monoamine bioavailability and homeostatic sleep.


Changes in local interaction rules during ontogeny underlie the evolution of collective behavior.

  • Alexandra Paz‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Collective motion emerges from individual interactions which produce groupwide patterns in behavior. While adaptive changes to collective motion are observed across animal species, how local interactions change when these collective behaviors evolve is poorly understood. Here, we use the Mexican tetra, A. mexicanus, which exists as a schooling surface form and a non-schooling cave form, to study differences in how fish alter their swimming in response to neighbors across ontogeny and between evolutionarily diverged populations. We find that surface fish undergo a transition to schooling during development that occurs through increases in inter-individual alignment and attraction mediated by changes in the way fish modulate speed and turning relative to neighbors. Cavefish, which have evolved loss of schooling, exhibit neither of these schooling-promoting interactions at any stage of development. These results reveal how evolution alters local interaction rules to produce striking differences in collective behavior.


Neurofibromin 1 mediates sleep depth in Drosophila.

  • Elizabeth B Brown‎ et al.
  • PLoS genetics‎
  • 2023‎

Neural regulation of sleep and metabolic homeostasis are critical in many aspects of human health. Despite extensive epidemiological evidence linking sleep dysregulation with obesity, diabetes, and metabolic syndrome, little is known about the neural and molecular basis for the integration of sleep and metabolic function. The RAS GTPase-activating gene Neurofibromin (Nf1) has been implicated in the regulation of sleep and metabolic rate, raising the possibility that it serves to integrate these processes, but the effects on sleep consolidation and physiology remain poorly understood. A key hallmark of sleep depth in mammals and flies is a reduction in metabolic rate during sleep. Here, we examine multiple measures of sleep quality to determine the effects of Nf1 on sleep-dependent changes in arousal threshold and metabolic rate. Flies lacking Nf1 fail to suppress metabolic rate during sleep, raising the possibility that loss of Nf1 prevents flies from integrating sleep and metabolic state. Sleep of Nf1 mutant flies is fragmented with a reduced arousal threshold in Nf1 mutants, suggesting Nf1 flies fail to enter deep sleep. The effects of Nf1 on sleep can be localized to a subset of neurons expressing the GABAA receptor Rdl. Sleep loss has been associated with changes in gut homeostasis in flies and mammals. Selective knockdown of Nf1 in Rdl-expressing neurons within the nervous system increases gut permeability and reactive oxygen species (ROS) in the gut, raising the possibility that loss of sleep quality contributes to gut dysregulation. Together, these findings suggest Nf1 acts in GABA-sensitive neurons to modulate sleep depth in Drosophila.


Dendrite branching and self-avoidance are controlled by Turtle, a conserved IgSF protein in Drosophila.

  • Hong Long‎ et al.
  • Development (Cambridge, England)‎
  • 2009‎

The dendritic trees of neurons result from specific patterns of growth and branching, and dendrite branches of the same neuron avoid one another to spread over a particular receptive field. Recognition molecules on the surfaces of dendrites influence these patterning and avoidance processes by promoting attractive, repulsive or adhesive responses to specific cues. The Drosophila transmembrane protein Turtle (Tutl) and its orthologs in other species are conserved members of the immunoglobulin superfamily, the in vivo functions of which are unknown. In Drosophila sensory neurons, we show that the tutl gene is required to restrain dendrite branch formation in neurons with simple arbors, and to promote dendrite self-avoidance in neurons with complex arbors. The cytoplasmic tail of Tutl is dispensable for control of dendrite branching, suggesting that Tutl acts as a ligand or co-receptor for an unidentified recognition molecule to influence the architecture of dendrites and their coverage of receptive territories.


A genome-wide Drosophila screen for heat nociception identifies α2δ3 as an evolutionarily conserved pain gene.

  • G Gregory Neely‎ et al.
  • Cell‎
  • 2010‎

Worldwide, acute, and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knockdown in Drosophila, we report a global screen for an innate behavior and identify hundreds of genes implicated in heat nociception, including the α2δ family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (α2δ3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, α2δ3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in α2δ3 mutant mice revealed impaired transmission of thermal pain-evoked signals from the thalamus to higher-order pain centers. Intriguingly, in α2δ3 mutant mice, thermal pain and tactile stimulation triggered strong cross-activation, or synesthesia, of brain regions involved in vision, olfaction, and hearing.


EndoGI modulates Notch signaling and axon guidance in Drosophila.

  • David D O'Keefe‎ et al.
  • Mechanisms of development‎
  • 2011‎

Signaling through the Notch receptor has dramatically different effects depending on cell type and developmental timing. While a myriad of biological systems affected by Notch have been described, the molecular mechanisms by which a generic Notch signal is translated into a cell-type-specific output are less clear. Canonically, the Notch intracellular domain (NICD) translocates into the nucleus upon ligand binding to transcriptionally regulate target genes. In order to generate specificity, therefore, additional factors must exist that modulate NICD activity. Here we describe a novel regulator of the Notch pathway, Endonuclease GI (EndoGI). EndoGI localizes to the nucleus of most cells and activates Notch signaling when overexpressed. In the absence of endoGI, mutant animals are viable, but uncoordinated as motor neurons fail to innervate their appropriate muscle targets. Our data is therefore consistent with EndoGI functioning as a positive regulator of the Notch signaling pathway, playing a critical role during axon guidance of motor neurons.


Sequential use of mushroom body neuron subsets during drosophila odor memory processing.

  • Michael J Krashes‎ et al.
  • Neuron‎
  • 2007‎

Drosophila mushroom bodies (MB) are bilaterally symmetric multilobed brain structures required for olfactory memory. Previous studies suggested that neurotransmission from MB neurons is only required for memory retrieval. Our unexpected observation that Dorsal Paired Medial (DPM) neurons, which project only to MB neurons, are required during memory storage but not during acquisition or retrieval, led us to revisit the role of MB neurons in memory processing. We show that neurotransmission from the alpha'beta' subset of MB neurons is required to acquire and stabilize aversive and appetitive odor memory, but is dispensable during memory retrieval. In contrast, neurotransmission from MB alphabeta neurons is only required for memory retrieval. These data suggest a dynamic requirement for the different subsets of MB neurons in memory and are consistent with the notion that recurrent activity in an MB alpha'beta' neuron-DPM neuron loop is required to stabilize memories formed in the MB alphabeta neurons.


A single pair of leucokinin neurons are modulated by feeding state and regulate sleep-metabolism interactions.

  • Maria E Yurgel‎ et al.
  • PLoS biology‎
  • 2019‎

Dysregulation of sleep and feeding has widespread health consequences. Despite extensive epidemiological evidence for interactions between sleep and metabolic function, little is known about the neural or molecular basis underlying the integration of these processes. D. melanogaster potently suppress sleep in response to starvation, and powerful genetic tools allow for mechanistic investigation of sleep-metabolism interactions. We have previously identified neurons expressing the neuropeptide leucokinin (Lk) as being required for starvation-mediated changes in sleep. Here, we demonstrate an essential role for Lk neuropeptide in metabolic regulation of sleep. The activity of Lk neurons is modulated by feeding, with reduced activity in response to glucose and increased activity under starvation conditions. Both genetic silencing and laser-mediated microablation localize Lk-dependent sleep regulation to a single pair of Lk neurons within the Lateral Horn (LHLK neurons). A targeted screen identified a role for 5' adenosine monophosphate-activated protein kinase (AMPK) in starvation-modulated changes in sleep. Knockdown of AMPK in Lk neurons suppresses sleep and increases LHLK neuron activity in fed flies, phenocopying the starvation state. Further, we find a requirement for the Lk receptor in the insulin-producing cells (IPCs), suggesting LHLK-IPC connectivity is critical for sleep regulation under starved conditions. Taken together, these findings localize feeding-state-dependent regulation of sleep to a single pair of neurons within the fruit fly brain and provide a system for investigating the cellular basis of sleep-metabolism interactions.


A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste.

  • John M Tauber‎ et al.
  • PLoS genetics‎
  • 2017‎

Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f) is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA) taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d) are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants.


CaveCrawler: an interactive analysis suite for cavefish bioinformatics.

  • Annabel Perry‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2022‎

The growing use of genomics in diverse organisms provides the basis for identifying genomic and transcriptional differences across species and experimental conditions. Databases containing genomic and functional data have played critical roles in the development of numerous genetic models but most emerging models lack such databases. The Mexican tetra, Astyanax mexicanus exists as 2 morphs: surface-dwelling and cave-dwelling. There exist at least 30 cave populations, providing a system to study convergent evolution. We have generated a web-based analysis suite that integrates datasets from different studies to identify how gene transcription and genetic markers of selection differ between populations and across experimental contexts. Results of diverse studies can be analyzed in conjunction with other genetic data (e.g. Gene Ontology information), to enable biological inference from cross-study patterns and identify future avenues of research. Furthermore, the framework that we have built for A. mexicanus can be adapted for other emerging model systems.


A brain-wide analysis maps structural evolution to distinct anatomical module.

  • Robert A Kozol‎ et al.
  • eLife‎
  • 2023‎

The vertebrate brain is highly conserved topologically, but less is known about neuroanatomical variation between individual brain regions. Neuroanatomical variation at the regional level is hypothesized to provide functional expansion, building upon ancestral anatomy needed for basic functions. Classically, animal models used to study evolution have lacked tools for detailed anatomical analysis that are widely used in zebrafish and mice, presenting a barrier to studying brain evolution at fine scales. In this study, we sought to investigate the evolution of brain anatomy using a single species of fish consisting of divergent surface and cave morphs, that permits functional genetic testing of regional volume and shape across the entire brain. We generated a high-resolution brain atlas for the blind Mexican cavefish Astyanax mexicanus and coupled the atlas with automated computational tools to directly assess variability in brain region shape and volume across all populations. We measured the volume and shape of every grossly defined neuroanatomical region of the brain and assessed correlations between anatomical regions in surface fish, cavefish, and surface × cave F2 hybrids, whose phenotypes span the range of surface to cave. We find that dorsal regions of the brain are contracted, while ventral regions have expanded, with F2 hybrid data providing support for developmental constraint along the dorsal-ventral axis. Furthermore, these dorsal-ventral relationships in anatomical variation show similar patterns for both volume and shape, suggesting that the anatomical evolution captured by these two parameters could be driven by similar developmental mechanisms. Together, these data demonstrate that A. mexicanus is a powerful system for functionally determining basic principles of brain evolution and will permit testing how genes influence early patterning events to drive brain-wide anatomical evolution.


The Taurine Transporter Eaat2 Functions in Ensheathing Glia to Modulate Sleep and Metabolic Rate.

  • Bethany A Stahl‎ et al.
  • Current biology : CB‎
  • 2018‎

Sleep is critical for many aspects of brain function and is accompanied by brain-wide changes in the physiology of neurons and synapses [1, 2]. Growing evidence suggests that glial cells contribute to diverse aspects of sleep regulation, including neuronal and metabolic homeostasis [3-5], although the molecular basis for this remains poorly understood. The fruit fly, Drosophila melanogaster, displays all the behavioral and physiological characteristics of sleep [1, 2], and genetic screening in flies has identified both conserved and novel regulators of sleep and wakefulness [2, 6, 7]. With this approach, we identified Excitatory amino acid transporter 2 (Eaat2) and found that its loss from glia, but not neurons, increases sleep. We show that Eaat2 is expressed in ensheathing glia, where Eaat2 functions during adulthood to regulate sleep. Increased sleep in Eaat2-deficient flies is accompanied by reduction of metabolic rate during sleep bouts, an indicator of deeper sleep intensity. Eaat2 is a member of the conserved EAAT family of membrane transport proteins [8], raising the possibility that it affects sleep by controlling the movement of ions and neuroactive chemical messengers to and from ensheathing glia. In vitro, Eaat2 is a transporter of taurine [9], which promotes sleep when fed to flies [10]. We find that the acute effect of taurine on sleep is abolished in Eaat2 mutant flies. Together, these findings reveal a wake-promoting role for Eaat2 in ensheathing glia through a taurine-dependent mechanism.


Ade2 Functions in the Drosophila Fat Body To Promote Sleep.

  • Maria E Yurgel‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2018‎

Metabolic state is a potent modulator of sleep and circadian behavior, and animals acutely modulate their sleep in accordance with internal energy stores and food availability. Across phyla, hormones secreted from adipose tissue act in the brain to control neural physiology and behavior to modulate sleep and metabolic state. Growing evidence suggests the fat body is a critical regulator of complex behaviors, but little is known about the genes that function within the fat body to regulate sleep. To identify molecular factors functioning in non-neuronal tissues to regulate sleep, we performed an RNAi screen selectively knocking down genes in the fat body. We found that knockdown of Phosphoribosylformylglycinamidine synthase/Pfas (Ade2), a highly conserved gene involved the biosynthesis of purines, sleep regulation and energy stores. Flies heterozygous for multiple Ade2 mutations are also short sleepers and this effect is partially rescued by restoring Ade2 to the Drosophila fat body. Targeted knockdown of Ade2 in the fat body does not alter arousal threshold or the homeostatic response to sleep deprivation, suggesting a specific role in modulating baseline sleep duration. Together, these findings suggest Ade2 functions within the fat body to promote both sleep and energy storage, providing a functional link between these processes.


Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.

  • Pavel Masek‎ et al.
  • PLoS genetics‎
  • 2013‎

Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs) signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC) signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.


Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire.

  • Tiago Ferreira‎ et al.
  • Development (Cambridge, England)‎
  • 2014‎

The architectures of dendritic trees are crucial for the wiring and function of neuronal circuits because they determine coverage of receptive territories, as well as the nature and strength of sensory or synaptic inputs. Here, we describe a cell-intrinsic pathway sculpting dendritic arborization (da) neurons in Drosophila that requires Longitudinals Lacking (Lola), a BTB/POZ transcription factor, and its control of the F-actin cytoskeleton through Spire (Spir), an actin nucleation protein. Loss of Lola from da neurons reduced the overall length of dendritic arbors, increased the expression of Spir, and produced inappropriate F-actin-rich dendrites at positions too near the cell soma. Selective removal of Lola from only class IV da neurons decreased the evasive responses of larvae to nociception. The increased Spir expression contributed to the abnormal F-actin-rich dendrites and the decreased nocifensive responses because both were suppressed by reduced dose of Spir. Thus, an important role of Lola is to limit expression of Spir to appropriate levels within da neurons. We found Spir to be expressed in dendritic arbors and to be important for their development. Removal of Spir from class IV da neurons reduced F-actin levels and total branch number, shifted the position of greatest branch density away from the cell soma, and compromised nocifensive behavior. We conclude that the Lola-Spir pathway is crucial for the spatial arrangement of branches within dendritic trees and for neural circuit function because it provides balanced control of the F-actin cytoskeleton.


Postprandial sleep mechanics in Drosophila.

  • Keith R Murphy‎ et al.
  • eLife‎
  • 2016‎

Food consumption is thought to induce sleepiness. However, little is known about how postprandial sleep is regulated. Here, we simultaneously measured sleep and food intake of individual flies and found a transient rise in sleep following meals. Depending on the amount consumed, the effect ranged from slightly arousing to strongly sleep inducing. Postprandial sleep was positively correlated with ingested volume, protein, and salt-but not sucrose-revealing meal property-specific regulation. Silencing of leucokinin receptor (Lkr) neurons specifically reduced sleep induced by protein consumption. Thermogenetic stimulation of leucokinin (Lk) neurons decreased whereas Lk downregulation by RNAi increased postprandial sleep, suggestive of an inhibitory connection in the Lk-Lkr circuit. We further identified a subset of non-leucokininergic cells proximal to Lkr neurons that rhythmically increased postprandial sleep when silenced, suggesting that these cells are cyclically gated inhibitory inputs to Lkr neurons. Together, these findings reveal the dynamic nature of postprandial sleep.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: